- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays
摘要: Optical tweezers provide a versatile platform for the manipulation and detection of single atoms. Here, we use optical tweezers to demonstrate a set of tools for the microscopic control of atomic strontium, which has two valence electrons. Compared to the single-valence-electron atoms typically used with tweezers, strontium has a more complex internal state structure with a variety of transition wavelengths and linewidths. We report single-atom loading into an array of subwavelength scale optical tweezers and light-shift-free control of a narrow-linewidth optical transition. We use this transition to perform three-dimensional ground-state cooling and to enable high-fidelity nondestructive imaging of single atoms on subwavelength spatial scales. These capabilities, combined with the rich internal structure of strontium, open new possibilities including tweezer-based metrology, new quantum computing architectures, and new paths to low-entropy many-body physics.
关键词: Quantum Information,Atomic and Molecular Physics,Quantum Physics
更新于2025-09-23 15:23:52
-
Alkaline-Earth Atoms in Optical Tweezers
摘要: We demonstrate single-shot imaging and narrow-line cooling of individual alkaline-earth atoms in optical tweezers; specifically, strontium trapped in 515.2-nm light. Our approach enables high-fidelity detection of single atoms by imaging photons from the broad singlet transition while cooling on the narrow intercombination line, and we extend this technique to highly uniform two-dimensional tweezer arrays with 121 sites. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom to near the motional ground state of a tweezer, which is tuned to a magic-trapping configuration achieved by elliptical polarization. Finally, we present calculations, in agreement with our experimental results, that predict a linear-polarization and polarization-independent magic crossing at 520(2) nm and 500.65(50) nm, respectively. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline-earth atoms in tweezers—from fundamental experiments in atomic physics to quantum computing, simulation, and metrology.
关键词: Quantum Information,Atomic and Molecular Physics,Quantum Physics
更新于2025-09-23 15:23:52
-
High-Efficiency Measurement of an Artificial Atom Embedded in a Parametric Amplifier
摘要: A crucial limit to measurement efficiencies of superconducting circuits comes from losses involved when coupling to an external quantum amplifier. Here, we realize a device circumventing this problem by directly embedding an artificial atom, comprised of a transmon qubit, within a flux-pumped Josephson parametric amplifier. This configuration is able to enhance dispersive measurement without exposing the qubit to appreciable excess backaction. Near-optimal backaction is obtained by engineering the circuit to permit high-power operation that reduces information loss to unmonitored channels associated with the amplification and squeezing of quantum noise. By mitigating the effects of off-chip losses downstream, the on-chip gain of this device produces end-to-end measurement efficiencies of up to 80%. Our theoretical model accurately describes the observed interplay of gain and measurement backaction and delineates the parameter space for future improvement. The device is compatible with standard fabrication and measurement techniques and, thus, provides a route for definitive investigations of fundamental quantum effects and quantum control protocols.
关键词: Quantum Information,Condensed Matter Physics,Quantum Physics
更新于2025-09-23 15:23:52
-
A statistical description of scattering at the quantum level
摘要: Quantum physics is undoubtedly the most successful theory of the microscopic world, yet the complexities which arise in applying it even to simple atomic and molecular systems render the description of basic collision probabilities a formidable task. For this reason, approximations are often employed, the validity of which may be restricted to given energy regimes and/or targets and/or projectiles. Now we have found that the lognormal function, widely used for the probability distribution of macroscopic stochastic events (as diverse as periods of incubation of and recovery from diseases, size of grains, abundance of species, fluctuations in economic quantities, etc.) may also be employed to describe the energy dependence of inelastic collisions at the quantum level (including ionization, electron capture and excitation by electrons, positrons, protons, antiprotons, etc.), by allowing for the relevant threshold energy. A physical interpretation is discussed in this article by analogy with the heat capacity of few-level systems in solid state physics. We find the generality of the analysis to extend also to nuclear reactions. As well as aiding the description of collision probabilities for quantum systems, this finding is expected to impact also on the fundamental understanding of the interface between the classical and quantum domains.
关键词: ionization,electron capture,nuclear reactions,lognormal distribution,excitation,inelastic collisions,quantum physics
更新于2025-09-23 15:21:21
-
Operational Resource Theory of Continuous-Variable Nonclassicality
摘要: Genuinely quantum states of a harmonic oscillator may be distinguished from their classical counterparts by the Glauber-Sudarshan P representation—a state lacking a positive P function is said to be nonclassical. In this paper, we propose a general operational framework for studying nonclassicality as a resource in networks of passive linear elements and measurements with feed forward. Within this setting, we define new measures of nonclassicality based on the quantum fluctuations of quadratures, as well as the quantum Fisher information of quadrature displacements. These measures lead to fundamental constraints on the manipulation of nonclassicality, especially its concentration into subsystems, that apply to generic multimode non-Gaussian states. Special cases of our framework include no-go results in the concentration of squeezing and a complete hierarchy of nonclassicality for single-mode Gaussian states.
关键词: Optics,Quantum Physics,Quantum Information
更新于2025-09-04 15:30:14