修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • A Heuristic Method for Power Pylon Reconstruction from Airborne LiDAR Data

    摘要: Object reconstruction from airborne LiDAR data is a hot topic in photogrammetry and remote sensing. Power fundamental infrastructure monitoring plays a vital role in power transmission safety. This paper proposes a heuristic reconstruction method for power pylons widely used in high voltage transmission systems from airborne LiDAR point cloud, which combines both data-driven and model-driven strategies. Structurally, a power pylon can be decomposed into two parts: the pylon body and head. The reconstruction procedure assembles two parts sequentially: firstly, the pylon body is reconstructed by a data-driven strategy, where a RANSAC-based algorithm is adopted to fit four principal legs; secondly, a model-driven strategy is used to reconstruct the pylon head with the aid of a predefined 3D head model library, where the pylon head’s type is recognized by a shape context algorithm, and their parameters are estimated by a Metropolis–Hastings sampler coupled with a Simulated annealing algorithm. The proposed method has two advantages: (1) optimal strategies are adopted to reconstruct different pylon parts, which are robust to noise and partially missing data; and (2) both the number of parameters and their search space are greatly reduced when estimating the head model’s parameters, as the body reconstruction results information about the original point cloud, and relationships between parameters are used in the pylon head reconstruction process. Experimental results show that the proposed method can efficiently reconstruct power pylons, and the average residual between the reconstructed models and the raw data was smaller than 0.3 m.

    关键词: 3D pylon reconstruction,airborne LiDAR,Metropolis–Hastings sampler,RANdom Sample Consensus (RANSAC),simulated annealing

    更新于2025-09-23 15:21:21

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Tests of Fundamental Physics using Ramsey-Comb Spectroscopy on the Hydrogen Molecule

    摘要: This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors.

    关键词: RapidEye,robust estimation,general physical geometric model,optical imagery,Automatic orthorectification,ground control point (GCP) extraction,random sample consensus (RANSAC)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) - Macao, Macao (2019.12.1-2019.12.4)] 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) - Adaption of the Current Load Model to Consider Residential Customers Having Turned to LED Lighting

    摘要: This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors.

    关键词: robust estimation,general physical geometric model,random sample consensus (RANSAC),RapidEye,Automatic orthorectification,optical imagery,ground control point (GCP) extraction

    更新于2025-09-19 17:13:59