- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Facile fabrication of phosphorus-doped g-C3N4 exhibiting enhanced visible light photocatalytic degradation performance toward textile dye
摘要: Phosphorus-doped graphitic carbon nitride (P-g-C3N4) was facilely fabricated by in situ thermal copolymerization of urea and triphenylphosphine source materials. The P-g-C3N4 exhibited an enhanced photocatalytic performance than pristine g-C3N4 counterpart for the degradation of rhodamine B and acid blue D-2BR textile dye under visible light irradiation. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherms, X-ray photoelectron spectra (XPS), and diffuse reflection spectroscopy (DRS) techniques were used to characterized the structure and property of P-g-C3N4 photocatalyst. The phosphorus doping enhanced visible light harvesting and surface area, but also substantially changed the electronic property of g-C3N4 material that could suppress the recombination of photogenerated charge carriers, and thus improved photocatalytic performance.
关键词: Textile dye,Porous photocatalyst,Visible light,Degradation,Phosphorus-doped g-C3N4
更新于2025-09-23 15:23:52
-
Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation
摘要: Very recently, hybrid photocatalysts are gaining importance due to their unique and enhanced photocatalytic activity. In precedent study, we have successfully prepared Ag3PO4 (AP) and P and S co-doped g-C3N4 (PSGCN) based AP/PSGCN photocatalyst via facile deposition-precipitation method. The P and S co-doped g-C3N4 was prepared via thermal poly-condensation using hexachlorotriphosphazene (HCCP) and thiourea as precursors. The photocatalysts were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS). The thickness of AP/PSGCN was less than 9.0 nm. The zeta potential and Tyndall effect experiments validated the formation of well dispersed suspension of AP/PSGCN in water. The co-doping resulted in lowering of optical band gap of g-C3N4. The Tyndall effect experiments ascertained the formation of well dispersed suspension of AP/PSGCN. The photoluminescence and electrochemical impedance analysis confirmed reduction in recombination of photogenerated electron and hole pairs. The photodegradation of 2,4-dimethyl phenol (DMP) followed pseudo first order kinetics. The enhanced photocatalysis was due to direct Z-scheme mechanism. Hydroxyl and superoxide radicals were the two main reactive species during DMP degradation. The COD, HPLC and LC-MS investigations ascertained mineralization of DMP. AP/PSGCN displayed high stability and recycle efficiency significant for ten catalytic cycles.
关键词: DMP,Ag3PO4,P and S Co-doped g-C3N4,Nanocomposite,Z-scheme photocatalysis
更新于2025-09-23 15:22:29
-
Dual Functional S-Doped g-C3N4 Pinhole Porous Nanosheets for Selective Fluorescence Sensing of Ag+ and Visible-Light Photocatalysis of Dyes
摘要: This study explores the facile, template-free synthesis of S-doped g-C3N4 pinhole nanosheets (SCNPNS) with porous structure for fluorescence sensing of Ag+ ions and visible-light photocatalysis of dyes. As-synthesized SCNPNS samples were characterized by various analytical tools such as XRD, FT-IR, TEM, BET, XPS, and UV–vis spectroscopy. At optimal conditions, the detection linear range for Ag+ was found to be from 0 to 1000 nM, showing the limit of detection (LOD) of 57 nM. The SCNPNS exhibited highly sensitive and selective detection of Ag+ due to a significant fluorescence quenching via photo-induced electron transfer through Ag+–SCNPNS complex. Moreover, the SCNPNS exhibited 90% degradation for cationic methylene blue (MB) dye within 180 min under visible light. The enhanced photocatalytic activity of the SCNPNS was attributed to its negative zeta potential for electrostatic interaction with cationic dyes, and the pinhole porous structure can provide more active sites which can induce faster transport of the charge carrier over the surface. Our SCNPNS is proposed as an environmental safety tool due to several advantages, such as low cost, facile preparation, selective recognition of Ag+ ions, and efficient photocatalytic degradation of cationic dyes under visible light.
关键词: cationic dyes,pinhole porous nanosheet,photocatalytic degradation,visible light,Ag+ ions,S-doped g-C3N4,fluorescence sensing
更新于2025-09-19 17:15:36
-
Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. Coli disinfection
摘要: In this work, we have successfully anchored Ag3VO4 (AV) onto P and S co-doped g-C3N4 (PSGCN) to prepare high-dispersible AV/PSGCN photocatalyst via a deposition-precipitation method. The P and S co-doped g-C3N4 was synthesized via thermal polycondensation using hexachlorotriphosphazene (HCCP) and thiourea as precursors. AV/PSGCN was characterized using various spectral techniques. The atomic force analysis indicated that the thickness of AV/PSGCN was less than 3.0 nm. The zeta potential and Tyndall effect experiments ascertained formation of the well-dispersed suspension of AV/PSGCN in water. The co-doping resulted in lowering optical band gap of g-C3N4. The photoluminescence and electrochemical impedance analysis indicated suppression in recombination of photogenerated electron and hole pairs in AV/PSGCN. The photodegradation of phenol followed pseudo-first order kinetics. Hydroxyl radicals and holes were the two main reactive species for photodegradation of phenol. The COD, HPLC and LC-MS analyses confirmed mineralization of phenol in 6 h. Unlike conventional slurry type photo-reactors, AV/PSGCN was not magnetically agitated during photocatalytic reactions. AV/PSGCN exhibited significant antibacterial activity for E.Coli disinfection. The photodegradation of phenol and bacterial disinfection occurred through hole and hydroxyl radical formation mechanism.
关键词: Phenol degradation,Enhanced photocatalytic activity,Heterojunction formation,Ag3VO4,Antibacterial activity,Co-doped g-C3N4
更新于2025-09-10 09:29:36