修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

203 条数据
?? 中文(中国)
  • Wafer-level fabrication of 3D nanoparticles assembled nanopillars and click chemistry modification for sensitive SERS detection of trace carbonyl compounds

    摘要: In this work, we develop a new method for fabricating wafer-level gold nanoparticles covered silicon nanopillars (SNPs) combined with surface chemical modification to detect trace level carbonyl compounds based on surface-enhanced Raman scattering (SERS) technique. The SNPs are fabricated with an etching process using nano masks synthesized in oxygen-plasma bombardment of photoresist, and further deposited with gold nanoparticles on the surface, thus forming a 3D “particles on pillars” nanostructure for sensitive SERS detection. The enhancement factor (EF) of the devices for R6G detection can achieve 1.56×106 times compared with a flat Si substrate. We also developed an oximation click chemistry reaction procedure by chemically modifying the nanostructures with aminooxy dodecane thiol (ADT) self-assemble modification. The chip is further integrated with a polydimethylsiloxane (PDMS) microfluidic chamber, which allows fast and convenient detection of trace carbonyl compounds in liquid samples. The SERS detection capability was demonstrated by the dropwise addition of fluorescent carbonyl compounds before and after elution. Furthermore, the device was proved with high surface consistency(<70%) for repeated measurement, which has the potential for ppb(parts per billion) level concentration of carbonyl compounds detection.

    关键词: carbonyl compounds,chemical modification,nanopillars,SERS,click chemistry

    更新于2025-09-23 15:19:57

  • Nanohybrid Structures Based on Plasmonic or Fluorescent Nanoparticles and Retinal-Containing Proteins

    摘要: Rhodopsins are light-sensitive membrane proteins enabling transmembrane charge separation (proton pump) on absorption of a light quantum. Bacteriorhodopsin (BR) is a transmembrane protein from halophilic bacteria that belongs to the rhodopsin family. Potential applications of BR are considered so promising that the number of studies devoted to the use of BR itself, its mutant variants, as well as hybrid materials containing BR, in various areas grows steadily. Formation of hybrid structures combining BR with nanoparticles is an essential step in promotion of BR-based devices. However, rapid progress, continuous emergence of new data, as well as challenges of analyzing the entire data require regular reviews of the achievements in this area. This review is devoted to the issues of formation of materials based on hybrids of BR with fluorescent semiconductor nanocrystals (quantum dots) and with noble metal (silver, gold) plasmonic nanoparticles. Recent data on formation of thin (mono-) and thick (multi-) layers from materials containing BR and BR/nanoparticle hybrids are presented.

    关键词: hybrid structures,quantum dots,bacteriorhodopsin,supramolecular systems,SERS,plasmon nanoparticles,Raman scattering

    更新于2025-09-23 15:19:57

  • Surface Enhanced Raman Spectroscopy for In-Field Detection of Pesticides: A Test on Dimethoate Residues in Water and on Olive Leaves

    摘要: Dimethoate (DMT) is an organophosphate insecticide commonly used to protect fruit trees and in particular olive trees. Since it is highly water-soluble, its use on olive trees is considered quite safe, because it flows away in the residual water during the oil extraction process. However, its use is strictly regulated, specially on organic cultures. The organic production chain certification is not trivial, since DMT rapidly degrades to omethoate (OMT) and both disappear in about two months. Therefore, simple, sensitive, cost-effective and accurate methods for the determination of dimethoate, possibly suitable for in-field application, can be of great interest. In this work, a quick screening method, possibly useful for organic cultures certification will be presented. DMT and OMT in water and on olive leaves have been detected by surface enhanced Raman spectroscopy (SERS) using portable instrumentations. On leaves, the SERS signals were measured with a reasonably good S/N ratio, allowing us to detect DMT at a concentration up to two orders of magnitude lower than the one usually recommended for in-field treatments. Moreover, detailed information on the DMT distribution on the leaves has been obtained by Raman line- (or area-) scanning experiments.

    关键词: dimethoate,pesticides,SERS,portable microRaman,olive

    更新于2025-09-19 17:15:36

  • Harvesting hot electrons on Au nanoparticle monolayer by efficient compensation of holes

    摘要: Plasmonic metal nanoparticles (NPs), due to its unique optical properties, has been employed in various fields, including photocatalysis and surface-enhanced Raman scattering (SERS). Hot electrons generated from non-radiative decay of plasmons can be transferred to reactant molecules adsorbed on the metal surface and thus greatly facilitate photocatalytic chemical conversions under far milder conditions than conventional thermal catalysis. However, due to the ultra-fast relaxation or recombination, the number of hot electrons that can be effectively utilized is very limited. Herein, we report the efficient compensation of holes and harvesting hot electrons by adding NaBH4 or acidic Na2SO3 solution as holes scavenger to contribute for the lasting generation of hot electrons as well as active hydrogen species. A six-electron photocatalytic reduction of nitroarenes is achieved under laser illumination even on the ~80 nm Au NP self-assembled monolayer (SAM) after NaBH4 or acidic Na2SO3 solution catalytically inert are added. The role of NaBH4 or acidic Na2SO3 solution is elucidated to compensate holes rather than directly reduce the nitroarene. This concept of harvesting hot electrons by quick compensation of holes offers new opportunities for driving efficient light-to-energy conversion.

    关键词: Plasmonics,SERS,Au nanoparticles,Hot electrons,Nitroarene reduction

    更新于2025-09-19 17:15:36

  • Rapid Detection of Pesticide Residues in Paddy Water Using Surface-Enhanced Raman Spectroscopy

    摘要: Pesticide residue in paddy water is one of the main factors affecting the quality and safety of rice, however, the negative effect of this residue can be effectively prevented and reduced through early detection. This study developed a rapid detection method for fonofos, phosmet, and sulfoxaflor in paddy water through chemometric methods and surface-enhanced Raman spectroscopy (SERS). Residue from paddy water samples was directly used for SERS measurement. The obtained spectra from the SERS can detect 0.5 mg/L fonofos, 0.25 mg/L phosmet, and 1 mg/L sulfoxaflor through the appearance of major characteristic peaks. Then, we used chemometric methods to develop models for the intelligent analysis of pesticides, alongside the SERS spectra. The classification models developed by K-nearest neighbor identified all of the samples, with an accuracy of 100%. For the quantitative analysis, the partial least squares regression models obtained the best predicted performance for fonofos and sulfoxaflor, and the support vector machine model provided optimal results, with a root-mean-square error of validation of 0.207 and a coefficient of determination of validation of 0.99952, for phosmet. Experiments for actual contaminated samples also showed that the above models predicted the pesticide residue values with high accuracy. Overall, using SERS with chemometric methods provided a simple and convenient approach for the detection of pesticide residues in paddy water.

    关键词: paddy water,SERS,pesticides,rapid detection

    更新于2025-09-19 17:15:36

  • Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells

    摘要: The rapid identification of living cancer cells is highly crucial for cancer diagnosis, prognosis, and treatment monitoring. However, it is a great challenge to develop an effective way for rapid identification and imaging of cancer cells in a living state. Moreover, synthesis of monodisperse nanoparticles (NPs) with high sensitive surface-enhanced Raman scattering (SERS) activity is also a tough work. Herein, we creatively reported a convenient method to synthesize the novel NPs as the substrate of SERS sensors, which possessed a gold nanobipyramid core and silver nanorod shell. These gold nanobipyramid core and silver nanorod shell NPs (Au NBP@Ag NRs) were further modified with 4-mercaptobenzoicacid (4-MBA, Raman reporter molecule) and then conjugated with reduced bovine serum albumin (rBSA) and folic acid (FA) on their surfaces, to finally acquire Au NBP@Ag NR-MBA-rBSA-FA nanoprobes. In this system, With the enhancement factor (EF) of Au NBP@Ag NRs was about 4 × 10^7, it could significantly enhance Raman signal for Raman reporter molecules, and 4-MBA molecules performed high SERS signals based on their structures; the nanoprobes have favorable specificity and biocompatibility owing to the modification of rBSA which effectively avoided the nonspecific attachment of non-targeted cells. Moreover, the obtained SERS nanoprobes have excellent sensitivity for gastric cancer cells (MGC-803 cells) due to the conjugation of folic acid. Thus, the finally obtained Au NBP@Ag NR-MBA-rBSA-FA nanoprobes possess excellent detection efficiency for living MGC-803 cells. Therefore, our synthesized nanoprobes exhibit ultrasensitive SERS-activity, excellent specificity and superior cancer cells targeting ability, which could be applied for rapid identification and Raman imaging of living cancer cells via the SERS signal detection of the nanoprobes.

    关键词: SERS,Au NBP@Ag NR-MBA-rBSA-FA nanoprobes,Living cells imaging,MGC-803

    更新于2025-09-19 17:15:36

  • Quantitative Evaluation of SERS Nanoparticles for Intracellular pH Sensing at a Single Particle Level

    摘要: Intracellular pH is one of the key factors for understanding various biological processes in biological cells. Plasmonic gold and silver nanoparticles (NPs) have been extensively studied for surface-enhanced Raman scattering (SERS) applications for pH sensing as a local pH probe in a living cell. However, the SERS performance of NPs depends on material, size, and shape, which can be controlled by chemical synthesis. Here, we synthesized 18 types of gold and silver NPs with different morphologies such as sphere, rod, flower, star, core/shell, hollow, octahedra, core/satellites, and chainlike aggregates, and quantitatively compared their SERS performance for pH sensing. The SERS intensity from the most commonly utilized SERS probe molecule (para-mercaptobenzoic acid: p-MBA) for pH sensing was measured at the single nanoparticle level under the same measurement parameters such as low laser power (0.5 mW/μm2), short integration time (100 ms) at wavelengths of 405 nm, 488 nm, 532 nm, 584 nm, 676 nm, and 785 nm. In our measurement, the Ag chain, Ag core/satellites, Ag@Au core/satellites, and Au core/satellites nanoassemblies showed efficient pH sensing at the single particle level. By using p-MBA-conjugated Au@Ag core/satellites, we performed time-lapse pH measurements during apoptosis of HeLa cells. These experimental results confirmed that the pH measurement using p-MBA-conjugated Au@Ag core/satellites can be applied for long-term measurements of intracellular pH during cellular events.

    关键词: nanoparticles,pH sensing,SERS,apoptosis,intracellular

    更新于2025-09-19 17:15:36

  • Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips

    摘要: Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples.

    关键词: cancer biomarkers,SERS,specificity,machine learning,microfluidic

    更新于2025-09-19 17:15:36

  • <i>In vivo</i> multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy

    摘要: Vascular immune-inflammatory responses play a crucial role in the progression and outcome of atherosclerosis. The ability to assess localized inflammation through detection of specific vascular inflammatory biomarkers would significantly improve cardiovascular risk assessment and management; however, no multi-parameter molecular imaging technologies have been established to date. Here, we report the targeted in vivo imaging of multiple vascular biomarkers using antibody-functionalized nanoparticles and surface-enhanced Raman scattering (SERS). Methods: A series of antibody-functionalized gold nanoprobes (BFNP) were designed containing unique Raman signals in order to detect intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin using SERS. Results: SERS and BFNP were utilized to detect, discriminate and quantify ICAM-1, VCAM-1 and P-selectin in vitro on human endothelial cells and ex vivo in human coronary arteries. Ultimately, non-invasive multiplex imaging of adhesion molecules in a humanized mouse model was demonstrated in vivo following intravenous injection of the nanoprobes. Conclusion: This study demonstrates that multiplexed SERS-based molecular imaging can indicate the status of vascular inflammation in vivo and gives promise for SERS as a clinical imaging technique for cardiovascular disease in the future.

    关键词: vascular inflammation,molecular imaging,multiplexing,atherosclerosis,surface-enhanced Raman spectroscopy (SERS)

    更新于2025-09-19 17:15:36

  • Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric

    摘要: Flexible and recyclable surface-enhanced Raman scattering (SERS) substrate was fabricated based on woven cotton fabric by grafting Ag nanoparticle on the TiO2 film which was deposited on the cotton fabric. Due to the synergetic effect of heterostructure Ag/TiO2 and superior adsorption capacity of fabrics, recyclable SERS cotton fabric (RSCF) possessed excellent SERS sensitivity with a detected concentration of p-Aminothiophenol as low as 10-12 M. Furthermore, SERS performance of RSCF can be recovered after 180 min in the presence of UV light illumination, resulting from the photocatalytic property of TiO2 on the surface of RSCF. It can be further utilized to reproduce SERS performance of the RSCF through the UV-assisted cleaning. As a trial for potential application, based on the flexibility of cotton fabric, RSCF was employed to detect a pesticide (carbaryl) on the surface of a pear by simply swabbing and low concentration down to 10-4 M was reached. This work provides a potential guide towards the universal design of the flexible and recyclable SERS substrates for a promising application in the SERS rapid detection of trace-level toxic pollutants on the food.

    关键词: Recyclability,Cotton fabric,SERS substrate,Swabbing,Flexibility

    更新于2025-09-19 17:15:36