- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Soft-chemistry assisted strong metal-Support interaction on designed plasmonic core-shell photocatalyst for enhanced photocatalytic hydrogen production
摘要: Engineering photocatalysts based on gold nanoparticles (AuNPs) has attracted great attention for the solar energy conversion due to their multiple and unique properties. However, boosting the photocatalytic performance of plasmonic materials for H2 generation have reached some limitation. In this study, we propose a soft-chemistry method for the preparation of strong metal-interaction support (SMSI) to enhance the photocatalytic production of H2. The TiO2 thin overlayer covering finely dispersed AuNPs (forming an SMSI) boost the photocatalytic generation of hydrogen, compared to AuNPs deposited at the surface of TiO2 (labelled as a classical sytem). The pathway of the charge carriers’ dynamics occurred regarding the system configuration are found to be different. The photogenerated electrons are collected by AuNPs in a classical system and act as an active site, while, unconventionally, they are injected back in the titania surface for an SMSI photocatalyst making the system highly efficient. Additionally, the adsorption energy of methanol, theoretically estimated using density functional theory (DFT) methodology, is lower for soft-chemistry SMSI photocatalyst accelerating the kinetics of photocatalytic hydrogen production. SMSI obtained by soft-chemistry is an original concept for highly efficient photocatalytic materials, where the photons-to-energy conversion remains a major challenge.
关键词: hydrogen production,photocatalysts,solar energy conversion,gold nanoparticles,TiO2,SMSI
更新于2025-09-16 10:30:52