- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Structure and Permeability of Porous Silicon Investigated by Self-Diffusion NMR Measurements of Ethanol and Heptane
摘要: The adsorption and phase transitions of con?ned ?uids in nanoporous materials have been studied intensely because of both their fundamental interest and their crucial role in many technologies. Questions relating to the in?uence of the con?nement of ?uids, and the disorder or elastic deformation of porous solids on the liquid-gas phase transition are still under debate. Model systems are needed to understand the adsorption phenomenon. In this context, Porous Silicon (PoSi), which is a single crystal obtained by etching a (100) silicon wafer is an excellent candidate. Indeed, it consists of non-connected tubular pores running parallel to the [100] axis perpendicular to the wafer surface, with transverse sections with a polygonal shape of nanometric size whose areas are widely distributed. Once detached from the wafer, free PoSi membranes can be considered a nanoscale disordered honeycomb. Adsorption/desorption experiments have been performed to characterize the structure: they have shown that evaporation occurs collectively, an intriguing observation generally associated with a disordered pore structure with many interconnections through narrow necks. The characterization of ?uid mobility inside the pores should give complementary information about the pore structure and topology. This paper focuses on the dynamics of a ?uid con?ned inside the structure of porous silicon, and in particular the self-diffusion measurements (pulsed ?eld gradient spin echo Nuclear Magnetic Resonance (NMR)). The results show a strong anisotropy of the self-diffusion tensor, as expected in this highly anisotropic structure. However, a non-zero self-diffusion in the directions perpendicular to the pore axis is observed. In order to interpret these puzzling results, molecular and Brownian dynamics calculations are underway.
关键词: Ethanol,Porous Silicon,Permeability,Heptane,Self-Diffusion NMR
更新于2025-09-09 09:28:46