修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Nanoparticle Emissions from Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries

    摘要: As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNWs synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g-1 with 90 nm SiNWs, 3779 and 2712 mAh g-1 with 120 nm SiNWs, and 3611 and 2539 mAh g-1 with 140 nm SiNWs. It is found that, for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications, and can help the environmental impact assessment and life cycle assessment of the technology in the future.

    关键词: Lithium ion batteries (LIBs),Metal-assisted chemical etching (MACE),Nanoparticle emissions,Silicon nanowires (SiNWs)

    更新于2025-09-23 15:23:52

  • Functionalization of silicon nanowires by iron oxide and copper for degradation of phenol

    摘要: Iron oxide (Fe3O4) and copper-functionalized silicon nanowires (SiNWs) from silicon powder mesh < 500 with a spherical structure have been successfully synthesized as a heterogeneous catalyst for the degradation of phenol. This synthesized catalyst was prepared by nanosilicon wire powders. SiNWs have attracted much attention due their potential application in nanoscale devices such as field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. The SiNW properties were reinforced by functionalization. The synthesis of this catalyst was done by an in situ method for the decoration of SiNWs. Magnetic metal oxide compounds have been chosen not only to accelerate the catalyst recovery but also to improve the time duration of pollution elimination. Also, Cu nanoparticles were added in order to evaluate the catalytic property. In this work, the maximum amount of phenol degradation was obtained near 99.99%. Hybrid surface morphologies were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, the Brunauer–Emmette–Teller model and high-performance liquid chromatography.

    关键词: Mesoporous,Fe3O4–Cu-SiNWs catalyst,Phenol degradation,Sphere

    更新于2025-09-23 15:23:52

  • Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire

    摘要: An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FE-SEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis.

    关键词: SiNWs,iron-oxide catalyze,silicon-CNT structure,hybrid structure,High-density

    更新于2025-09-23 15:23:52

  • Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance

    摘要: The capacitive properties of electrodes elaborated from the electrochemical deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) coatings onto chemical vapor deposition (CVD)-grown silicon nanowires (SiNWs) were investigated for supercapacitor applications. A high areal capacitance value of 17 mF cm-2 (50 F g-1) was obtained at a scan rate of 100 mV s-1 in a 3-electrode cell configuration. Furthermore, this 3D hybrid nanostructure was analyzed by electrochemical quartz crystal microbalance (EQCM) to correlate the interfacial ionic exchange mechanisms to their electrochemical performance. It was demonstrated that both anions (BF4-) and cations (TBA+) were simultaneously involved in the charge compensation during the oxidation-reduction scans of cyclic voltammetry measurements.

    关键词: SiNWs,EQCM,PEDOT,(pseudo)-supercapacitors

    更新于2025-09-23 15:23:52

  • Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowires

    摘要: In this work, we report proof-of-concept results on the synthesis of Si core/ ZnO shell nanowires (SiNWs/ZnO) by combining nanosphere lithography (NSL), metal assisted chemical etching (MACE) and atomic layer deposition (ALD). The structural properties of the SiNWs/ZnO nanostructures prepared were investigated by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies. The X-ray diffraction analysis revealed that all samples have a hexagonal wurtzite structure. The grain sizes are found to be in the range of 7–14 nm. The optical properties of the samples were investigated using reflectance and photoluminescence spectroscopy. The study of photoluminescence (PL) spectra of SiNWs/ZnO samples showed the domination of defect emission bands, pointing to deviations of the stoichiometry of the prepared 3D ZnO nanostructures. Reduction of the PL intensity of the SiNWs/ZnO with the increase of SiNWs etching time was observed, depicting an advanced light scattering with the increase of the nanowire length. These results open up new prospects for the design of electronic and sensing devices.

    关键词: nanosphere lithography (NSL),atomic layer deposition (ALD),Silicon nanowires (SiNWs),metal-assisted chemical etching (MACE),ZnO

    更新于2025-09-23 15:21:21

  • SiNW/C@Pt Arrays for High-Efficiency Counter Electrodes in Dye-Sensitized Solar Cells

    摘要: Modern energy needs and the pressing issue of environmental sustainability have driven many research groups to focus on energy-generation devices made from novel nanomaterials. We have prepared platinum nanoparticle-decorated silicon nanowire/carbon core–shell nanomaterials (SiNW/C@Pt). The processing steps are relatively simple, including wet chemical etching to form the silicon nanowires (SiNWs), chemical vapor deposition to form the carbon shell, and drop-casting and thermal treatment to embed platinum nanoparticles (Pt NPs). This nanomaterial was then tested as the counter electrode (CE) in dye-sensitized solar cells (DSSCs). SiNW/C@Pt shows potential as a good electrocatalyst based on material characterization data from Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectroscopy shows that the surface reactivity of the SiNW/C is increased by the decoration of Pt NPs. These data also show that the carbon shell included both graphitic (sp2 hybridization) and defective (sp3 hybridization) phases of carbon. We achieved the minimum charge-transfer resistance of 0.025 ? · cm2 and the maximum ef?ciency of 9.46% with a symmetric dummy cell and DSSC device fabricated from the SiNW/C@Pt CEs, respectively.

    关键词: core–shell,defective carbon,electrocatalytic activity,dye-sensitized solar cells (DSSCs),counter electrodes (CEs),silicon nanowires (SiNWs)

    更新于2025-09-16 10:30:52