- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Optimization of laser-patterning process and module design for transparent amorphous silicon thin-film module using thin OMO back electrode
摘要: Transparent hydrogenated amorphous silicon thin-film solar modules are fabricated using oxide-metal-oxide (OMO) electrodes as the back electrode for building-integrated photovoltaic applications. The outer aluminum-doped zinc oxide and inner silver layers constitute a thin OMO electrode (~110 nm thick), exhibiting a sheet resistance of 6.8 Ω/□ and an average transmittance of ~88% in the visible range of 400–800 nm. The external quantum efficiency and average transmittance of the cell were investigated for the absorber-layer thickness using the finite-difference time-domain method, and it was found that the optical loss in the cell was mainly due to the absorption of the front electrode in the ultra-violet region and free-carrier absorption of the OMO in the infrared region. Fabrication issues are introduced for a 532 nm short-pulse high-power laser patterning process for transparent modules with thin OMO electrodes. Optimization of the laser power for the P2 and P3 laser processes is demonstrated by observing the profiles and measuring the shunt resistance of the laser-patterned edges. Furthermore, the cell width is optimized based on an equivalent circuit model using PSpice simulation. The highest module efficiency and average transparency achieved in the range of 500–800 nm were 5.6% and 15.2%, respectively. The short-circuit current density, fill factor, and open-circuit voltage per cell of the module were found to be 10.8 mA/cm2, 62.7%, and 0.830 V, respectively.
关键词: Laser patterning,Transparent amorphous silicon photovoltaic,Equivalent circuit,Building integrated photovoltaic,Cell geometry,Oxide-metal-oxide electrode
更新于2025-09-23 15:21:01
-
Robust crystalline silicon photovoltaic module (c-Si PVM) for the tropical climate: future facing the technology
摘要: A critical impediment to the adoption and sustained deployment of crystalline silicon photovoltaic modules (c-Si PVMs) in the tropical climate is the accelerated degradation of their interconnections. At 40.7% c-Si PVM interconnect failure rate worldwide and significantly higher in the tropics. A review of impact of elevated ambient temperature operations on accelerated interconnection degradation is critical to achieving the system’s sustainability and reliability up to the 25-year design lifespan. This study reviews critical module’s operational parameters to advise on the future facing creation of robust module for the tropical region. Key areas reviewed include manufacturing process, solar cell efficiency, interconnection technology and R&D parameters. The review discusses the state-of-the-art in c-Si PVM interconnection technologies and propose back-junction-back-contact (BJ-BC) cell technology for adoption in the manufacture of the next generation of robust c-Si PVM for the tropics. The review findings provide insight into the future facing the robust c-Si PVM technology that is useful to the module design engineers.
关键词: Crystalline silicon photovoltaic module,elevated ambient temperature,interconnection failure,module life span
更新于2025-09-23 15:19:57
-
Improving the performance of silicon solar cell by optimizing metallization
摘要: Solar energy exploitation through photovoltaic technology has demonstrated a sustainable way for curbing energy needs and cutting environmental issues happening due to emissions of carbon dioxide, CO2 from the usage of non-renewable energy resources. The purpose of this study was to reduce metallization by choosing optimal metallization on silicon photovoltaic wafer. Using numerical study, the effects of the number of busbars, fingers, and soldering/probe points were analyzed and also the study of the size of busbar and finger was carried out to find the optimal value for each which assures better performance. It is revealed that increasing the number and size of busbars, fingers, and probe points result in increasing fill factor, however, the efficiency of the device is limited to a number which provides the best optimal performance in terms of efficiency, whereas increasing the size (width) of the parameter result in a decrease in efficiency increasing shading factor. The optimal value of prescribed parameters was recorded as 4, 82, and 20 numbers of busbars, fingers, and probe points, respectively, while an optimal value of the width of busbar and finger is found as 0.5 mm and 60 mm, respectively. These values attained efficiency and fill factor above 20% and 80%, respectively. This study finds a realistic method to further diminish the metallization, improve the performance, and reduce the cost of often used industrial silicon photovoltaic cells.
关键词: renewable energy,Metallization,silicon photovoltaic cell,optimization
更新于2025-09-19 17:13:59
-
All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module
摘要: Nowadays, global warming, energy issues and environmental concern have forced energy production stakeholders to find new low carbon solutions. Photovoltaic technologies as renewable energy resources represent a competitive way for the transition from conventional fossil fuels towards a renewable energy economy. The highest renewable energy systems (RES) market share is based on silicon photovoltaic (Si-PV). The installed RES have rapidly increased over the last two decades, but, after the end of their service life, they will be disposed of. Therefore, the constant increase of the installed RES has attracted the global concern due to their impact on the environment and, most of all, due to the content of their valuable resources. However, the rational management of RES waste has not been addressed so far. The paper represents an extension of a previous work focused on Si-PV recycling by developing all waste hybrid composites. The extension research conducted in this paper is related to the influence of Si-PV characteristics on the mechanical performances and water stability of the hybrid composites. All waste hybrid composites developed by embedding different Si-PV grain sizes were tested before and after water immersion in terms of mechanical strength, interfacial adhesion, crystallinity and morphology by scanning electron microscopy (SEM) analyses. The results revealed the better performance of such Si-PV composites compared to that of sieved composites even after long term water immersion. Therefore, high-content Si-PV hybrid composites could be developed without Si-PV powder sieving. Further on, all waste hybrid composites could be used as paving slabs, protective barriers for outdoor applications.
关键词: silicon photovoltaic module,water stability,all waste hybrid composite materials,interfacial adhesion,recycling,mechanical properties
更新于2025-09-16 10:30:52
-
Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: down-shifting layers and luminescent solar concentrators
摘要: The mismatch between the photovoltaic (PV) cells absorption and the solar irradiance on earth is one of the major limitations towards more efficient PV energy conversion. This aspect was addressed by down-shifting the solar irradiance on Earth through luminescent down-shifting layers based on lanthanide-doped surface-functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA) coated on the surface of commercial Si-based PV cells. The IS-PMMA hybrid materials exhibit efficient solar radiation harvesting (spectral overlap of ~ 9.5· 1019 photons/(s· m)) and conversion (quantum yield ~ 52%). The direct solar radiation and the down-shifted radiation are partially guided and lost through total internal reflection to the layer edges being unavailable for PV conversion of the coated PV cell. By tuning the down-shifting layer thickness, it also acts as luminescent solar concentrator enabling the collection of the guided radiation by flexible PV cells applied on the borders of the down-shifting layer leading to an enhancement of the PV energy conversion from ~ 5% (in the case of the single-use of the luminescent down-shifting layer) to ~ 13% comparing to the bare PV cell. The overall electrical output of the device resulted in an absolute external quantum efficiency increase of ~32% for the optimized Eu3+-based films in the UV spectral region (compared with the bare PV device, which is among the best values reported so far).
关键词: silicon photovoltaic cells,photovoltaics,ionosilicas,lanthanides,luminescent solar concentrators,down-shifting layers
更新于2025-09-16 10:30:52
-
Performance of thin silicon solar cells with a quasi-monocrystalline porous silicon layer on the rear side
摘要: The present study employs porous silicon (PS) or quasi-monocrystalline porous silicon (QMPS) as a reflector material on the rear side. It presents an analytical model that simulates the performance of n+–p–p+ thin silicon solar cell with a QMPS layer on the rear side. The development of the model involves the formulation of a complete set of equations for the photo-current density that is then solved analytically in the base region, including the photocurrent generated under the effect of the light reflected by QMPS layer. This also takes the contribution of the back p+-region (back surface field) to the generated photocurrent into consideration. The enhancements brought by the thin film QMPS with regard to photovoltaic (PV) parameters are then investigated and compared to those brought by the conventional silicon solar cell. Moreover, the effect of the QMPS layer on the current–voltage characteristics J–V and the internal quantum efficiency (IQE) of thin silicon solar cells are simulated by means of AFORS-HET software. These simulations show that the improvement of the PV parameters is due to an increase in the transport parameters of minority carriers in the p-region.
关键词: porous silicon,thin silicon solar cells,quasi-monocrystalline porous silicon,photovoltaic parameters,AFORS-HET software
更新于2025-09-12 10:27:22
-
Titanium Dioxide Hole-Blocking Layer in Ultra-Thin-Film Crystalline Silicon Solar Cells
摘要: One of the remaining obstacles to achieving the theoretical ef?ciency limit of crystalline silicon (c-Si) solar cells is high interface recombination loss for minority carriers at the Ohmic contacts. The contact recombination loss of the ultra-thin-?lm c-Si solar cells is more severe than that of the state-of-art thick cells due to the smaller volume and higher minority carrier concentration. This paper presents a design of an electron passing (Ohmic) contact for n-type Si that is hole-blocking with signi?cantly reduced hole recombination. By depositing a thin titanium dioxide (TiO2) layer, we form a metal-insulator-semiconductor (MIS) contact for a 2 μm-thick Si cell to achieve an open circuit voltage (Voc) of 645 mV, which is 10 mV higher than that of an ultra-thin cell with a traditional metal contact. This TiO2 MIS contact constitutes a step towards high-ef?ciency ultra-thin-?lm c-Si solar cells.
关键词: titanium dioxide,Silicon photovoltaic,ultra-thin-?lm,selective contact
更新于2025-09-11 14:15:04
-
Intelligent classification of silicon photovoltaic cell defects based on eddy current thermography and convolution neural network
摘要: Defects the production process of silicon photovoltaic (Si-PV) cells are urgently needed to be detected due to their serious impact on the normal generation of PV system. In view of the shortcomings such as low defect efficiency, few detection data and high detection error rate in the existing industrial production line, the main research purpose of this study is to complete an intelligent classification method for efficient and innovative defect detection for Si-PV cells and modules. The purpose is to improve the detection efficiency of Si-PV cell, to ensure the safety and reliability of Si-PV cell production process, to achieve large number of Si-PV cell defects detection and classification. Firstly, the Eddy Current Thermography (ECT) system of Si-PV cells was established. Secondly, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) algorithms are compared for thermography sequences processing. Thirdly, LeNet-5, VGG-16 and GoogleNet models are compared for Si-PV cell defects classification. Finally, the results showed that the proposed method have successful application in Si-PV cell defects detection and classification.
关键词: Nondestructive testing & evaluation,Defect feature extraction,Defect classification,Convolution neural network,Silicon photovoltaic cell,Eddy current thermography
更新于2025-09-11 14:15:04