修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

68 条数据
?? 中文(中国)
  • Accidental contamination of substrates and polymer films by organic quantum emitters

    摘要: We report the observation of ubiquitous contamination of dielectric substrates and polymethylmethacrylate matrices by organic molecules with optical activity in the visible spectral range. Contamination sites of individual solvent-related fluorophores in thin films of polymethylmethacrylate constitute fluorescence hotspots with quantum emission statistics and quantum yields approaching 30% at cryogenic temperatures. Our findings not only resolve prevalent puzzles in the assignment of spectral features to various nanoemitters on bare dielectric substrates or in polymer matrices, they also identify means for simple and cost-efficient realization of single-photon sources in the visible spectral range.

    关键词: contamination of substrate and polymer matrix,organic fluorophores,single photon emitters,single molecule spectroscopy,Photoluminescence and fluorescence spectroscopy

    更新于2025-11-25 10:30:42

  • Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances

    摘要: Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light?matter coupling, sensing, lasing, and light harvesting, nonlinear nanophotonics, solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods. Here, we map the enhanced emission of single fluorescent molecules coupled to a plasmonic particle array with ~20 nm in-plane resolution by using stochastic super-resolution microscopy. We find that extended lattice resonances have minimal influence on the spontaneous decay rate of an emitter but instead can be exploited to enhance the outcoupling and directivity of the emission. Our results can guide the rational design of future optical devices based on plasmonic particle arrays.

    关键词: light?matter interaction,nanophotonics,single molecule localization,collective resonances,plasmonics,super-resolution microscopy

    更新于2025-11-25 10:30:42

  • Fluorophore Labeling, Nanodisc Reconstitution and Single-molecule Observation of a G Protein-coupled Receptor

    摘要: Activation of G protein-coupled receptors (GPCRs) by agonist ligands is mediated by a transition from an inactive to active receptor conformation. We describe a novel single-molecule assay that monitors activation-linked conformational transitions in individual GPCR molecules in real-time. The receptor is site-specifically labeled with a Cy3 fluorescence probe at the end of trans-membrane helix 6 and reconstituted in phospholipid nanodiscs tethered to a microscope slide. Individual receptor molecules are then monitored over time by single-molecule total internal reflection fluorescence microscopy, revealing spontaneous transitions between inactive and active-like conformations. The assay provides information on the equilibrium distribution of inactive and active receptor conformations and the rate constants for conformational exchange. The experiments can be performed in the absence of ligands, revealing the spontaneous conformational transitions responsible for basal signaling activity, or in the presence of agonist or inverse agonist ligands, revealing how the ligands alter the dynamics of the receptor to either stimulate or repress signaling activity. The resulting mechanistic information is useful for the design of improved GPCR-targeting drugs. The single-molecule assay is described in the context of the β2 adrenergic receptor, but can be extended to a variety of GPCRs.

    关键词: Phospholipid nanodiscs,G-protein coupled receptors,Conformational dynamics,β2 adrenergic receptor,Single-molecule fluorescence

    更新于2025-11-21 11:24:58

  • A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy

    摘要: Copper is one of the most important transition metals in many organisms where it catalyzes a manifold of different processes. As a result of copper’s redox activity, organisms have to avoid unbound ions, and a dysfunctional copper homeostasis may lead to multifarious pathological processes in cells with very severe ramifications for the affected organisms. In many neurodegenerative diseases, however, the exact role of copper ions is still not completely clarified. In this work, a high-affinity and highly selective copper probe molecule, based on the naturally occurring tetrapeptide DAHK is synthesized. The sensor (log KD = ? 12.8 ± 0.1) is tagged with a fluorescent BODIPY dye whose fluorescence lifetime distinctly decreases from 5.8 ns ± 0.2 ns to 0.4 ns ± 0.1 ns on binding to copper(II) cations. It is shown by using fluorescence lifetime correlation spectroscopy that the concentration of both probe and probe-copper complex can be simultaneously measured even at nanomolar concentration levels. This work presents a possible starting point for a new type of probe and method for future in vivo studies to further reveal the exact role of copper ions in organisms.

    关键词: BODIPY,Single molecule detection,FLIM,Alzheimer,ATCUN motif,Parkinson,DAHK

    更新于2025-11-21 11:24:58

  • Redox-state dependent blinking of single photosystem I trimers at around liquid-nitrogen temperature

    摘要: Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid?nitrogen temperatures. Fluorescence emission at around 720 nm from the red Chls in single PSI trimers was monitored at 80–100 K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.

    关键词: Cryogenic microscope,Phylloquinone,Fluorescence blinking,Site energy,Single-molecule spectroscopy,Electrochromic shift

    更新于2025-09-23 15:23:52

  • Optimizing the conductance switching performance in photoswitchable dimethyldihydropyrene/cyclophanediene single-molecule junctions

    摘要: Designing molecular switches with high stability and performance is still a great challenge in the field of molecular electronics. For this aim, key factors influencing the charge transport properties of molecular devices require to be carefully addressed. Here, by using the nonequilibrium Green’s function method in combination with the density functional theory, effect of bridging manner (i.e., linkage sites) for dimethyldihydropyrene (DHP)/cyclophanediene (CPD) photoswitchable molecule sandwiched between two Au(111) electrodes has been theoretically investigated. The computational results show that the fully conjugated DHP is more conductive than the less conjugated CPD, manifesting an evident switching effect. It is also found that the ON/OFF switching performance of DHP/CPD is dramatically modulated by the bridging manner. Further analysis attributes the switching feature to the different alignments of conducting HOMO with the Fermi energy for DHP and CPD. And it also reveals that local bond contributions to the electron transmission pathway are closely related to both the conjugation characteristics and bridging manner of the core molecule. This work suggests that the bridging manner of core molecule in single-molecule junction plays an essential role in determining the switching performance and should be carefully addressed in future design of molecular switches.

    关键词: Single-molecule switch,Density functional theory,Nonequilibrium Green’s function method

    更新于2025-09-23 15:23:52

  • Single-Molecule Based Electroluminescent Device as Future White Light Source

    摘要: During last two decades spectacular development of light emitting diodes (LEDs) has been achieved owing to their widespread application possibilities. However, traditional LEDs suffer from unavoidable energy loss due to the down conversion of photons, toxicity due to the involvement of rare-earth materials in their production, higher manufacturing cost, and reduced thermal stability that prevent them from all-inclusive applications. To address the existing challenges associated with current commercially available white LEDs, herein, we report on a broadband emission originating from an intrinsic lanthanide-free single-molecule based LED. Self-assembly of a butterfly-shaped strontium-based compound {[Sr(H2btc)2(MeOH)(H2O)2]·2H2O} (1) was achieved through the reaction of Sr(NO3)2 with a benzene-1,2,3-tricarboxylic acid hydrate (1,2,3-H3btc) under hydrothermal conditions. White LED based on this single molecule exhibited a remarkable broadband luminescent spectrum with Commission Internationale de l’Eclairage (CIE) coordinates at (0.33, 0.32) under 30 mA current injection. Such a broad luminescent spectrum can be attributed to the simultaneous existence of several emission lines originating from the intramolecular interactions within the structure. To further examine the nature of the observed transitions, density functional theory (DFT) calculations were carried out to explore the geometric and electronic properties of the complex. Our study thus paves the way toward a key step for developing a basic understanding and the development of high performance broadband light emitting devices with environment-friendly characteristics based on organic?inorganic supramolecular materials.

    关键词: Electroluminescence,Photoluminescence,Single Molecule,WLEDs,Strontium

    更新于2025-09-23 15:23:52

  • Accelerated FRET-PAINT microscopy

    摘要: Recent development of FRET-PAINT microscopy significantly improved the imaging speed of DNA-PAINT, the previously reported super-resolution fluorescence microscopy with no photobleaching problem. Here we try to achieve the ultimate speed limit of FRET-PAINT by optimizing the camera speed, dissociation rate of DNA probes, and bleed-through of the donor signal to the acceptor channel, and further increase the imaging speed of FRET-PAINT by 8-fold. Super-resolution imaging of COS-7 microtubules shows that high-quality 40-nm resolution images can be obtained in just tens of seconds.

    关键词: FRET-PAINT,Super-resolution fluorescence microscopy,FRET,Single-molecule localization microscopy

    更新于2025-09-23 15:22:29

  • Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response

    摘要: Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization is not well understood. Here, we report the localization of mRNA to stress granules (SGs) and processing bodies (PBs) and its effect on translation and degradation during the integrated stress response. Using single mRNA imaging in living human cells, we find that the interactions of mRNAs with SGs and PBs have different dynamics, very few mRNAs directly move between SGs and PBs, and that specific RNA-binding proteins can anchor mRNAs within these compartments. During recovery from stress, we show that mRNAs that were within SGs and PBs are translated and degraded at similar rates as their cytosolic counterparts. Our work provides a framework for using single-molecule measurements to directly investigate the molecular mechanisms of phase-separated compartments within their cellular environment.

    关键词: P-bodies,integrated stress response,degradation,stress granules,LARP1,mRNA localization,single-molecule imaging,translation

    更新于2025-09-23 15:22:29

  • Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation

    摘要: Serum response factor (SRF) mediates immediate early gene (IEG) and cytoskeletal gene expression programs in almost any cell type. So far, SRF transcriptional dynamics have not been investigated at single-molecule resolution. We provide a study of single Halo-tagged SRF molecules in fibroblasts and primary neurons. In both cell types, individual binding events of SRF molecules segregated into three chromatin residence time regimes, short, intermediate, and long binding, indicating a cell type-independent SRF property. The chromatin residence time of the long bound fraction was up to 1 min in quiescent cells and significantly increased upon stimulation. Stimulation also enhanced the long bound SRF fraction at specific timepoints (20 and 60 min) in both cell types. These peaks correlated with activation of the SRF cofactors MRTF-A and MRTF-B (myocardin-related transcription factors). Interference with signaling pathways and cofactors demonstrated modulation of SRF chromatin occupancy by actin signaling, MAP kinases, and MRTFs.

    关键词: SRF,single molecule,neuron,transcription,HaloTag

    更新于2025-09-23 15:22:29