- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Higha??Efficiency Lowa??Temperaturea??Processed Mesoscopic Perovskite Solar Cells from SnO <sub/>2</sub> Nanorod Selfa??Assembled Microspheres
摘要: Mesoporous scaffolds in perovskite solar cells (PSCs) can accelerate the formation of heterogeneous nucleation sites, leading to enhanced quality of perovskite films and uniform perovskite coverage over large areas. Nevertheless, the mesoporous electron transport layers (ETLs) can effectively compensate for the drawback of shorter electron diffusion lengths than their hole counterparts. Therefore, most mesoscopic PSCs usually show superior photovoltaic performance to their planar counterparts. However, mesoporous ETLs, particularly those prepared with metal oxide nanocrystals, often require a high-temperature sintering process for the removal of residual organics and the improved crystallization of metal oxides. Here, a novel emulsion-based bottom-up self-assembly strategy is used to prepare sizable SnO2 microspheres from oleic acid capped SnO2 nanorods. Combined with an in-situ ligand-stripping strategy, the low-temperature solution-processed mesoscopic PSCs can achieve efficiency as high as 21.35% with slight hysteresis and good reproducibility. In particular, the emulsion-based bottom-up self-assembly strategy is a general way for preparing microspheres from several kinds of semiconductor nanocrystals, so it will greatly expand the material selection range for preparing efficient mesoscopic PSCs and even inverted mesoscopic devices.
关键词: mesoscopic perovskite solar cells,in situ ligand stripping,low-temperature process,SnO2 nanorod self-assembled microspheres
更新于2025-09-16 10:30:52