修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Investigation of a low cost tapered plastic fiber optic biosensor based on manipulation of colloidal gold nanoparticles

    摘要: We demonstrate a low cost Tapered Fiber Optic Biosensor (TFOBS) based on manipulation of colloidal gold nanoparticle in the evanescent field of tapered fiber. The sensor consists of a biconical tapered plastic optical fiber with colloidal gold nanoparticles coated on the tapered region. The strength of evanescent field absorption as a function of gold nanoparticle size is evaluated using Finite Difference Time Domain simulation. Simulation results suggest that in order to achieve maximum absorption in visible range of wavelength, the size of the gold nanoparticle should be in the range 3-4 nm. Gold nanoparticle of desired size is then synthesized and coated on the tapered region to fabricate a TFOBS. It is found experimentally that coating of gold nanoparticles enhances the fraction of light coming out to the cladding surface. This is explained as a consequence of local surface plasmonic resonance. The TFOBS is then tested for its sensing application to detect Bovine Serum Albumin. Level of detection of the proposed sensor is calculated and is found as 0.326gm/dL.As normal albumin level in healthy human blood serum is between 3.5 to 5.5gm/dL, the proposed TFOBS can be used as a low cost accurate albumin sensor.

    关键词: Tapered Fiber Optic Sensor,Local Surface Plasmon Resonance,Manipulation of nanoparticle

    更新于2025-09-23 15:22:29

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Localized Surface Plasmon Resonance Based Tapered Fiber Optic Ethanol Sensor

    摘要: Ethanol is mostly found in drinks, food, beverages and in the human body fluids, e.g. urine, serum, sweat, saliva, and blood etc. A high concentration of ethanol in body fluids causes various metabolic disorders like diabetes, cirrhosis and hepatitis. Therefore, the detection of ethanol is essential for clinical and forensic investigation. In this study, we report the fabrication and characterization of a localized surface plasmon resonance (LSPR) based tapered fiber optic ethanol sensor. Nowadays LSPR is a very useful technique for biosensing applications. For the LSPR phenomenon, the size of the nanoparticles should be smaller than the wavelength of the light. When an electromagnetic wave is incident on metal nanoparticles, the collective oscillation of the free electrons inside the metal nanoparticles occurs. The maximum amplitude occurs when the frequency of oscillation matches with the frequency of the incident light. Due to the frequency matching a strong field enhancement is observed around the nanoparticles. In the phenomenon called as LSPR, the peak absorbance wavelength depends on the dielectric constant of the medium surrounding the nanoparticles. To fabricate the LSPR based fiber optic probe for ethanol sensing, we have synthesized gold nanoparticles (AuNP) using Turkevich method. The TEM image of AuNPs is shown in fig. 1 (a). The schematic of the LSPR probe is shown in fig 1 (b). The probe is consists of AuNPs over the core of the tapered optical fiber followed by the immobilized layer of enzyme alcohol dehydrogenase (ADH) and coenzyme nicotinamide adenine dinucleotide (NAD). For the attachment of gold nanoparticles the core was cleaned by pirhana solution and kept in amino silane solution. Dip coating was used to coat the AuNPs over the silanized core. After this, the probe was incubated in 1 mM aqueous solution of cystamine dihydrochloride for 1 h for attachment of –NH2 groups over the AuNPs-coated fiber core. Finally, the probe was incubated for 12 h into the ADH and NAD solution. This completed the probe fabrication step.

    关键词: Ethanol Sensor,Alcohol Dehydrogenase,Tapered Fiber Optic,Localized Surface Plasmon Resonance,Nicotinamide Adenine Dinucleotide,Gold Nanoparticles

    更新于2025-09-11 14:15:04