修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

207 条数据
?? 中文(中国)
  • Control of Structural and Electrical Properties of Indium Tin Oxide (ITO)/Cu(In,Ga)Se <sub/>2</sub> Interface for Transparent Back-Contact Applications

    摘要: Development of transparent-conducting oxide (TCO) back contact for Cu(In,Ga)Se2 (CIGS) absorber is crucial for bifacial CIGS photovoltaics. However, GaOx formation at the TCO/CIGS interface has hampered the photocarrier extraction. Here, by controlling the Na doping scheme, we show that the hole transporting properties at the indium?tin oxide (ITO)/CIGS back contact can be substantially improved, regardless of the GaOx formation. Na incorporation from the glass substrate during the GaOx forming phase created defective states at the interface, which allowed efficient hole extraction from CIGS, while post Na treatment after GaOx formation did not play such a role. Furthermore, we discovered that an almost GaOx-free interface could be made by reducing the underlying ITO film thickness, which revealed that ITO/CIGS junction is inherently Schottky. In the GaOx-free condition, post-Na treatment could eliminate the Schottky barrier and create ohmic junction due to generation of conducting paths at the interface, which is supported by our photoluminescence analysis.

    关键词: Schottky barrier,indium-tin oxide,photovoltaics,Na doping,Ga)Se2,ohmic contact,GaOx,transparent-conducting oxide,Cu(In

    更新于2025-09-23 15:22:29

  • P-1.3: The conductivity modulation of amorphous zinc tin oxide thin film by Ar plasma treatment

    摘要: We propose a method to form low-resistance amorphous zinc tin oxide thin film (a-ZTO) by Ar plasma. The results show that the Ar plasma treatment can effectively decrease the resistivity of the a-ZTO. The ZTO film treated with Ar plasma at suitable time and moderate operating power, exhibits a low sheet resistance of 2.3 kΩ/□. With the help of PECVD-SiOx coverage layer, the sheet resistance of Ar-plasma treated ZTO is enhanced and increases only one order of magnitude after annealing at 230 ℃. As a result, an optimized Ar plasma treatment for fabrication of low-resistance a-ZTO film is presented.

    关键词: amorphous zinc tin oxide,thermal stability,Ar plasma treatment,low-resistance

    更新于2025-09-23 15:22:29

  • Signal-on Electrochemiluminescence Aptasensor for Bisphenol A based on Hybridization Chain Reaction and Electrically Heated Electrode

    摘要: A simple and sensitive electrochemiluminescence (ECL) aptasensor has been developed for bisphenol A (BPA) detection. The capture DNA (CDNA) was modified on the heated indium-tin-oxide (ITO) working electrode surface firstly and then hybridized with BPA aptamer to form double strand DNA (dsDNA). The presence of target can cause the releasing of aptamer from the electrode surface since the aptamer prefers to switch its configuration to combine with BPA. Subsequently, the free CDNA will induce hybridization chain reaction (HCR) to produce long dsDNA on the electrode surface. Ru(phen)3 2+ can integrate into the grooves of dsDNA to act as an ECL reagent, thus enhanced ECL signal can be detected. The temperature control during the processes of target recognition and HCR were realized through the heated electrode instead of the bulk solution heating. Furthermore, the performance of the ECL aptasensor can be further enhanced at elevated electrode temperature. Under the optimized conditions, the ECL intensity of the system has a linear relationship with the logarithm of BPA concentration in the range of 2.0 pM-50 nM. The limit of detection (LOD) at 55 °C (electrode surface temperature) was calculated to be 1.5 pM, which was approximately 6.5-fold lower than that at 25 °C. The proposed biosensor has been applied to detect the BPA in drink samples with satisfactory results.

    关键词: electrochemiluminescence,hybridization chain reaction,heated indium-tin-oxide electrode,aptamer,bisphenol A

    更新于2025-09-23 15:22:29

  • Enhanced Photocatalytic Hydrogen Evolution with TiO <sub/>2</sub> -TiN Nanoparticle Composites

    摘要: Metal nitrides have potential in energy applications due to their physical and optical properties. Nanoparticle composites of titanium nitride (TiN) and titanium dioxide (TiO2) were investigated for their photocatalytic hydrogen (H2) activity via methanol reformation. Physical mixing of the nanoparticulate TiO2 and TiN was employed to prevent the oxy-nitride formation and particle aggregation observed in thermal preparations. This convenient combination of TiO2 and TiN demonstrated a substantial synergistic effect with enhanced activity (9.4 μmol/h TiO2-TiN vs 1.8 μmol/h TiO2) under combined UV/Vis light. Irradiation under only UV light resulted in a similar enhancement factor compared to using combined UV/Vis light, demonstrating that the enhanced activity of the composites occurs essentially for UV-driven photocatalysis. No activity/enhancement was observed with only visible light irradiation, however, minor enhancement was observed when switching between UV and UV/Vis irradiation, suggesting a contribution from the TiN plasmon. We propose that the plasmonic contribution is dependent on the band gap excitation of TiO2, which reduces the degree of band bending at the TiO2/TiN interface. This promotes the migration of hot electrons from TiN away from the TiO2/TiN interface to be used for H2 evolution.

    关键词: TiO2-TiN Nanoparticle Composites,Plasmonics,Optical,Magnetic,and Hybrid Materials,Photocatalytic Hydrogen Evolution

    更新于2025-09-23 15:22:29

  • Phase field modeling of grain boundary migration and preferential grain growth driven by electric current stressing

    摘要: A phase field model incorporating the electrostatic free energy and the grain orientation effect is developed and employed to study the grain boundary migration and preferential grain growth in widely used beta-tin (β-Sn) under electric current stressing. The directional migration of grain boundaries and the preferential growth of the grain with its orientation having low electrical resistivity along the electric current direction are theoretically clarified. In a bicrystal system containing a circular grain, the shrinkage velocity and morphology changes of grains are dominated by the competition effect between the grain boundary energy and the electrostatic free energy; in particular, the high-density electric current can induce the instability of grain morphology evolution. Moreover, grain morphology evolution leads to the change of the voltage across the β-Sn system; it is found that the voltage decreases over time in a tricrystal system, while the variation of the voltage across the bicrystal system is related to the above-mentioned competition effect. The proposed model and results provide insights into the orientation-related microstructure evolution under electric current stressing.

    关键词: preferential grain growth,electric current stressing,microstructure evolution,grain boundary migration,beta-tin,phase field model

    更新于2025-09-23 15:21:21

  • Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer

    摘要: In the present paper, tin dioxide (SnO2) thin ?lms had been fabricated with different precursor concentration in the range of 0.01–0.09 M onto amorphous glass substrates utilizing nebulizer spray method. The effect of precursor concentration on electrical, morphological, structural, optical, and photoluminescence properties has been investigated. XRD spectrum revealed that the polycrystalline nature of SnO2 thin ?lms with tetragonal structure in the range of precursor concentration 0.03–0.09 M, which are having a favorable growth orientation along (110) direction. The estimated average crystallite size varied between 22 and 53 nm. UV-Visible spectrum exposes the transmittance of SnO2 thin ?lms lies between 90 and 78% in the visible range. The direct band gap energy reduced from 3.83 to 3.71 eV on increasing precursor concentration upto 0.07 M and then it was further increased. Photoluminescence spectra at room temperature exhibited a strong peak at 362 nm with shoulder peak at 376 nm and two broad peaks are 493 nm and 518 nm. SEM analysis illustrated that the polyhedron-like grains were homogeneously arranged over the ?lm surface. The ?lm prepared at 0.07 M precursor concentration shows the least resistivity 2.41 × 10?3 Ω-cm and good ?gure of merit 16.41 × 10?3 (Ω/sq)?1.

    关键词: Tin dioxide,Electrical measurements,Optical,NSP

    更新于2025-09-23 15:21:21

  • Microstructure and properties of honeycomb composite films containing Eu and Sn

    摘要: Honeycomb composite films were prepared by breath figure method via a straightforward, one-step process by doping complex containing Eu or Sn into polystyrene-b-poly(acrylic acid) (PS-b-PAA) solution. Several influencing factors, such as the concentration of the block polymer solution, the relative humidity of the environment and the amount of complexes, were investigated to control micropore size and tune film surface properties. The characteristics of the composite films were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet and emission spectra. Results indicate that composite films containing Eu have excellent optical performance, and micro-patterned bowl-like SnO2 microparticles could be fabricated from composite films containing Sn after being calcined at 600 °C for 5 h. This general approach for the fabrication of honeycomb composite films opens a convenient and effective route to the functional modification of honeycomb films and offers new prospects for the application in miniaturized sensors, micro-reactor and catalysis.

    关键词: Complex containing Eu,Breath figure method,Honeycomb composite film,Tin dioxide,Microstructure

    更新于2025-09-23 15:21:21

  • Oriented Crystallization of Mixeda??Cation Tin Halides for Highly Efficient and Stable Leada??Free Perovskite Solar Cells

    摘要: As the most promising lead-free branch, tin halide perovskites suffer from the severe oxidation from Sn2+ to Sn4+, which results in the unsatisfactory conversion efficiency far from what they deserve. In this work, by facile incorporation of methylammonium bromide in composition engineering, formamidinium and methylammonium mixed cations tin halide perovskite films with ultra-highly oriented crystallization are synthesized with the preferential facet of (001), and that oxidation is suppressed with obviously declined trap density. MA+ ions are responsible for that impressive orientation while Br- ions account for their bandgap modulation. Depending on high quality of the optimal MA0.25FA0.75SnI2.75Br0.25 perovskite films, their device conversion efficiency surges to 9.31% in contrast to 5.02% of the control formamidinium tin triiodide perovskite (FASnI3) device, along with almost eliminated hysteresis. That also results in the outstanding device stability, maintaining above 80% of the initial efficiency after 300 h of light soaking while the control FASnI3 device fails within 120 h. This paper definitely paves a facile and effective way to develop high-efficiency tin halide perovskites solar cells, optoelectronic devices, and beyond.

    关键词: trap density,methylammonium bromide,oriented crystallization,tin halide perovskites,divalent tin ions

    更新于2025-09-23 15:21:01

  • Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small <i>V</i> <sub/>oc</sub> Deficit of 0.33 V

    摘要: 1.5–1.6 eV bandgap Pb-based perovskite solar cells (PSCs) with 30–31% theoretical efficiency limit by the Shockley–Queisser model achieve 21–24% power conversion efficiencies (PCEs). However, the best PCEs of reported ideal-bandgap (1.3–1.4 eV) Sn–Pb PSCs with a higher 33% theoretical efficiency limit are <18%, mainly because of their large open-circuit voltage (Voc) deficits (>0.4 V). Herein, it is found that the addition of guanidinium bromide (GABr) can significantly improve the structural and photoelectric characteristics of ideal-bandgap (≈1.34 eV) Sn–Pb perovskite films. GABr introduced in the perovskite films can efficiently reduce the high defect density caused by Sn2+ oxidation in the perovskite, which is favorable for facilitating hole transport, decreasing charge-carrier recombination, and reducing the Voc deficit. Therefore, the best PCE of 20.63% with a certificated efficiency of 19.8% is achieved in 1.35 eV PSCs, along with a record small Voc deficit of 0.33 V, which is the highest PCE among all values reported to date for ideal-bandgap Sn–Pb PSCs. Moreover, the GABr-modified PSCs exhibit significantly improved environmental and thermal stability. This work represents a noteworthy step toward the fabrication of efficient and stable ideal-bandgap PSCs.

    关键词: ideal bandgap,perovskite solar cells,mixed tin–lead perovskites,guanidinium bromide,molecular doping

    更新于2025-09-23 15:21:01

  • Synthesis and characterization of Sb doped SnO<sub>2</sub> for the photovoltaic applications: different route

    摘要: Antimony doped tin oxide (ATO - Sn0.92O2:Sb0.08) nanoparticles were synthesized by different chemical routes such as Hydrothermal (HT), Sol-gel (SG) and Sonochemical (SC) methods. The XRD pattern of the samples shows that Sb ion successfully incorporated into Sn lattice without altering the crystal structure. Optical spectral analysis of the samples indicates more absorption in the visible region. The vibrational modes of the ATO nanoparticles were characterized by FTIR spectra. DSSCs were fabricated with the as-prepared ATO nanoparticles from different routes, Eosin-Y dye, I-/I3- redox couple as electrolyte. I-V characteristics of the as fabricated devices were recorded to estimate the efficiency of the device. Our results indicate the DSSC fabricated using the hydrothermally prepared material is to be considered as a suitable optical window material for dye and good electrolyte to achieve higher open circuit voltage (VOC). Further, the anode fabricated using the hydrothermally synthesized ATO nanoparticle gives good efficiency (η = 4.15%) comparing to the DSSCs fabricated using NPs synthesized via other methods. Hence, hydrothermally prepared material is to be considered as a suitable optical window materials for DSSCs.

    关键词: antimony doped tin oxide,Dye sensitized solar cell,optical window

    更新于2025-09-23 15:21:01