- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Atomic-thick TiO <sub/>2</sub> (B) nanosheets decorated with ultrafine Co <sub/>3</sub> O <sub/>4</sub> nanocrystals as a highly efficient catalyst for lithium-oxygen battery
摘要: Development of high efficient catalysts based on transition metal oxides (TMOs) is desirable, and remains a big challenge for lithium-oxygen (Li-O2) batteries. In the present work, atomic-thick TiO2(B) nanosheets decorated with ultrafine Co3O4 nanocrystals (Co3O4-TiO2(B)) was synthesized and utilized as cathode catalyst in Li-O2 batteries by designing a hybrid and inducing oxygen vacancies. The XPS characterization results suggested that the introduction of Co3O4 nanocrystals could induce numerous oxygen vacancies in the TiO2(B) nanosheets through Co doping in the hybrid catalyst. The subsequent electrochemical experiments indicated that the Li-O2 batteries with the prepared hybrid catalysts showed high specific capacity (11000 mAhg-1), and good cycling stability (200 cycles at a limited capacity of 1000mAhg-1) with low polarization (above 2.7V for discharge medium voltage and below 4.0V for charge medium voltage within 80 cycles). Furthermore, a possible working mechanism was proposed for a better understanding of the high performance of Co3O4-TiO2(B) catalysts for the Li-O2 batteries. This work also provided some new insights into designing efficient catalysts through interface engineering between 2D (two dimentional) TMOs and 0D (zero dimentional) TMOs for Li-O2 batteries or other catalysis related fields.
关键词: film-like Li2O2,oxygen vacancies,TiO2(B) nanosheets,Co3O4 nanocrystals,Li-O2 battery
更新于2025-09-23 15:21:21
-
Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution
摘要: The development of low cost, stable, robust photocatalysts to convert solar energy into hydrogen energy is an important challenge. Here, we describe a simple solvothermal method to successfully fabricate a catalyst with a hybrid 0D/2D Ni2P quantum dot/TiO2(B) nanosheet architecture. HRTEM shows that Ni2P quantum dots about 5 nm in size were dispersed on ultrathin TiO2(B) nanosheets. The optimum photocatalytic H2 evolution rate with 10 wt% Ni2P/TiO2(B) (3.966 mmol g?1 h?1), which was 15 times higher than pure TiO2(B) nanosheets. Significantly, the new catalyst shows high stability and reusability in multiply cycled H2 production runs for a 30 h period. The H2 production rate can be considerably increased furthered by using synergistic photothermal H2 evolution (20.129 mmol g?1 h?1 at 90 °C).
关键词: TiO2(B) nanosheets,Photocatalytic H2 evolution,Ni2P quantum dots,0D/2D architecture,Synergistic photothermal catalysis
更新于2025-09-11 14:15:04