- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- Dye-sensitized solar cell
- Photoelectrode
- Light scattering layer
- Transmittance
- White pigment (R902+)
- Rutile titanium dioxide
- Optoelectronic Information Materials and Devices
- Tribhuvan University
-
Fabrication of peanut-like TiO2 microarchitecture with enhanced surface light trapping and high specific surface area for high-efficiency dye sensitized solar cells
摘要: The quality of TiO2 photoelectrode is critical to fabricate high-performance dye-sensitized solar cells (DSSCs), but constructing TiO2 microstructure with high exposure reactive facets and high specific surface area is still a challenge. Herein, we present a facile route for creating a novel peanut-like (PN) anatase TiO2 microstructure with high exposed (001) facet, enhanced light trapping and large specific surface area using a one-pot hydrothermal method without fluorion assistance. With the introduction of diethylenetriamine as shape controlling agent and two-phase interface by etherification reaction of isopropyl alcohol, anatase PN TiO2 microarchitecture consisted with ultrathin nanosheets can be successfully fabricated. The obtained PN TiO2 combines the advantages of high exposed reactive (001) facets and large specific surface area (180.8 m2/g). The PN TiO2 based DSSC exhibits an outstanding photovoltaic conversion efficiency up to 9.14%, which can attribute to larger dye loading, superior light scattering capability, higher electron collection efficiency, narrower bandgap as well as efficient electron injection, together with improved electron transport and reduced charge recombination due to the unique peanut-like microstructure. Our work demonstrates the potential of PN TiO2 for improving the performance of energy storage devices.
关键词: Dye sensitized solar cell,(001) facet,Titanium dioxide,Improved electron transport,Peanut-like structure
更新于2025-11-14 17:04:02
-
The Size Effect of TiO2 Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell
摘要: Size controllable TiO2 hollow microspheres (HMS) were synthesized by a carbonaceous spheres (CS) template method. Based on TiO2 HMS, the ZnS/CdS quantum dots (QDs) were loaded to form a ZnS/CdS@TiO2 HMS photoanode for quantum dots sensitized solar cell (QDSSC). The size effects of TiO2 HMS on photovoltaic performance were investigated, and showed that TiO2 HMS with sizes ~560 nm produced the best short-circuit current density (Jsc) of 8.02 mA cm?2 and highest power conversion efficiency (PCE) of 1.83%, showing a better photovoltaic performance than any other QDSSCs based on TiO2 HMS with size ~330 nm, ~400 nm, and ~700 nm. The improvement of photovoltaic performance based on ~560 nm TiO2 HMS which can be ascribed to the enhanced light harvesting efficiency caused by multiple light reflection and strong light scattering of TiO2 HMS. The ultraviolet-visible (UV-vis) spectra and incident photo to the current conversion efficiency (IPCE) test results confirmed that the size of TiO2 HMS has an obvious effect on light harvesting efficiency. A further application of ~560 nm TiO2 HMS in ZnS/PbS/CdS QDSSC can improve the PCE to 2.73%, showing that TiO2 HMS has wide applicability in the design of QDSSCs.
关键词: titanium dioxide,quantum dots sensitized solar cells,hollow microspheres
更新于2025-11-14 17:04:02
-
Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy
摘要: In this study, typical TC6 titanium alloy was taken to investigate the effects of multiple laser peening (LP) on the vibration fatigue properties and microstructural evolution. The vibration fatigue experiments were conducted, while the vibration fatigue life of the specimens before and after LP was compared and the fracture morphologies were observed by scanning electron microscopy (SEM). In addition, the measurements of residual stress and microhardness were carried out. The microstructures produced by different treatments were also characterized by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The experimental results indicated that multiple LP could indeed enhance the vibration fatigue properties of TC6 titanium alloy. Comparing with the investigated specimen without LP, the vibration fatigue life of the specimen subjected to 5 times LP increased by 105.2%. Meanwhile, after 5 times LP, the surface residual stress transformed from tensile stress (+26 MPa) to compressive stress (?485 MPa), and the surface microhardness was 428 HV, which increased by 32.9% compared with the untreated sample. Additionally, high-density of dislocation and deformation twin were also generated after multiple LP. The improvement of vibration fatigue properties was attributed to the rewarding compressive residual stress and the beneficial microstructural evolution induced by multiple LP.
关键词: TC6 titanium alloy,Laser peening,Vibration fatigue properties,Microstructure evolution,Residual stress
更新于2025-11-14 17:04:02
-
Insights into the thermo-photo catalytic production of hydrogen from water on a low-cost NiOx-loaded TiO2 catalyst
摘要: Thermo-photo catalytic water splitting, where the introduction of thermal energy increases the oxidation driving force for narrow-band-gap photocatalysts (with a low valence band potential), exhibited significantly advanced performance for hydrogen production compared with general water splitting at room temperature. Herein, a low-cost NiOx-loaded TiO2 catalyst was reported for thermo-photo catalytic water splitting with methanol as the sacrificial agent. The catalyst with an optimal Ni ratio of 5 wt.% achieved a hydrogen evolution rate of 53.7 mmol/h/g under simulated AM 1.5G sunlight at 260℃, which was 2.5 times more than that without illumination, with apparent quantum efficiencies of 66.24%, 33.55%, 32.52% and 15.35% at 380, 420, 450 and 500 nm, respectively. More impressively, under the irradiation of visible light (λ>420 nm) at this temperature, and photohydrogen yield could still reach 26.9 mmol/h/g, which was 5 orders of magnitude greater than that (0.0011 mmol/h/g) conducted at room temperature. Isotope tracer experiments demonstrated that the introduction of photo energy promoted the hydrogen production mainly by enhancing hydrogen evolution from water splitting rather than methanol decomposition or reformation. Furthermore, the step-wise reaction mechanism was revealed with insights into the synergistic roles of thermo-energy and photo-energy for production of hydrogen from water. Those findings highlight the great promise of thermo-photo catalysis and should inspire more efforts for water splitting.
关键词: visible light,Hydrogen production,nickel-based catalysts,thermo-photo catalysis,titanium dioxide
更新于2025-11-14 17:03:37
-
Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application
摘要: TiO2 is a prominent photocatalyst and has been pioneering the research in water splitting for hydrogen cell production. However, TiO2 has low visible region absorption which limit its functionality as a photoabsorber and requires addition of other high absorptive material such as BiVO4. Fabrication of TiO2 photoanode on FTO substrate and deposition of BiVO4 on TiO2 were done using simple spin coating procedure. TiO2/BiVO4 photoelectrode were first tested for its photo absorption, photocurrent generation and electrical impedance to obtain the optimized sample. Optimized sample then further tested for its photocurrent generation stability using linear sweep voltammetry and time dependent photocurrent test. Photo absorption enhancement from TiO2/BiVO4 of almost 10 folds achieved along the visible region comparing to pure TiO2. Photogenerated charge produced from TiO2/BiVO4 is also 3 folds higher compared to pure TiO2at water oxidation threshold potential at 1.23 V vs. RHE. From photocurrent generation analysis, heterostructure of TiO2/BiVO4 proven to produce more than 3 folds higher photocurrent comparing to both pure TiO2 and BiVO4.
关键词: Z-scheme,Bismuth vanadate,Thin-film,Titanium dioxide,Photoelectrochemical water splitting
更新于2025-11-14 15:19:41
-
First titanium square fragment {Ti4(μ4-Se)(μ2-Se2)4} in its selenoiodide: Synthesis and structure of Ti4Se9I6
摘要: The first titanium selenoiodide Ti4Se9I6 was synthesized as black crystals by heating of Ti, Se, and I2 at 250 °C in 5:9:5 M ratio. The crystal structure of the compound was solved by X-ray single-crystal diffractometry (sp. gr. P-1, a = 7.9652(10), b = 10.3390(15), c = 15.692(2) ?; α = 79.116(7)°, β = 75.861(7)°, γ = 71.437(7)°; Z = 2) with final R1 = 0.0397. The structure includes square {Ti4(μ4-Se)(μ2-Se2)4} fragment coordinated by four terminal and four bridging μ2-I atoms. Ti4+ has d0 configuration, and stability of the structure fragments is provided by metal to ligand bonding which was confirmed by DFT calculations.
关键词: Metal chalcohalides,Titanium,Square complex,Synthesis,Selenide,X-ray crystal structure,Chain structure,DFT calculations,Iodide
更新于2025-11-14 15:14:40
-
Anisotropic infrared light emission from quasi-one-dimensional layered TiS<sub>3</sub>
摘要: Atomically thin semiconductors hold great potential for nanoscale photonic and optoelectronic devices because of their strong light absorption and emission. Despite progress, their application in integrated photonics is hindered particularly by a lack of stable layered semiconductors emitting in the infrared part of the electromagnetic spectrum. Here we show that titanium trisulfide (TiS3), a layered van der Waals material consisting of quasi-one-dimensional chains, emits near infrared light centered around 0.91 eV (1360 nm). Its photoluminescence exhibits linear polarization anisotropy and an emission lifetime of 210 ps. At low temperature, we distinguish two spectral contributions with opposite linear polarizations attributed to excitons and defects. Moreover, the dependence on excitation power and temperature suggests that free and bound excitons dominate the excitonic emission at high and low temperatures, respectively. Our results demonstrate the promising properties of TiS3 as a stable semiconductor for optoelectronic and nanophotonic devices operating at telecommunication wavelengths.
关键词: infrared luminescence,transition metal trichalcogenides,titanium trisulfide,linear polarization anisotropy,layered semiconductors
更新于2025-11-14 14:32:36
-
Plastic anisotropy of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy
摘要: Tensile tests of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy specimens in different orientations were conducted, which indicates significant plastic anisotropy of this material. Digital image correlation method added in-situ-tensile tests were carried out to investigate mechanical properties with respect to specified material structures. The results indicate that the plasticity properties of the thick columnar grain and that of other grains are significant different. Under the same stress level, the thick columnar grain yield firstly and bear the main plastic deformation of the whole specimen. The elasto-plastic Poisson's ratio of the thick columnar grains and that of other grains are also different. Tests on layer bands indicate that the coarser microstructures of the layer bands lead a stronger resistance to tensile plastic deformation, but a weaker resistance to shear plastic deformation. In addition, the direction of primary α laths on both sides of the layer bands may be different, and this has an obviously effect on the tensile plastic deformation of the specimen.
关键词: Digital image correlation method,Plastic anisotropy,Laser melting deposited,Titanium alloy,Mechanical properties
更新于2025-10-24 16:40:20
-
Dose-dependent enhancement of bioactivity by surface ZnO nanostructures on acid-etched pure titanium
摘要: Zinc (Zn) is found to be essential in biologic osseous functions, and deficiency of Zn may cause delayed skeletal growth and osteoporosis. Additionally, Zn-based coatings are reported to be effective to promote the bioactivity of implants. In this study, we employed the hydrothermal treatment to incorporate Zn into the surface of acid-etched pure Ti. The process was conducted in ammonia solution with an increased Zn precursor concentration (0.0002 M, 0.002 M and 0.02 M, respectively). XPS analysis demonstrated that the nanostructures were composed of ZnO. Proliferation and alkaline phosphatase (ALP) activity of osteoblast-like SaOS-2 cells were enhanced dose-dependently, compared to those on the acid-etched pure Ti without ZnO nanostructures. This study addresses a favourable surface modification method to improve the bioactivity of implants.
关键词: nanostructure,titanium,bone regeneration,hydrothermal treatment,ZnO
更新于2025-09-23 15:23:52
-
Modification of TiO <sub/>2</sub> (1?1?0)/organic hole transport layer interface energy levels by a dipolar perylene derivative
摘要: Our photoemission study reveals that the work function of TiO2(1 1 0) decreases by up to 1.5 eV upon deposition of 9-(bis-(p-(tert-octyl)phenyl)amino)-perylene-3,4-dicarboxylic anhydride (BOPA-PDCA). This effect is attributed to a chemical reaction of TiO2(1 1 0) and the molecular anhydride group, as well as the molecular dipole. Analysis of the film thickness dependent photoemission and metastable atom electron spectroscopy data reveals that for low coverage the perylene backbone of BOPA-PDCA is almost parallel to the substrate surface and higher coverage leads to an orientational transition to essentially upright standing molecules. Comparing the energy-level alignment between TiO2(1 1 0) and the hole transport materials N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) without and with the BOPA-PDCA interlayer, we find that the perylene derivative has a positive impact on the level alignment for dye-sensitized solar cells with high open-circuit voltages.
关键词: solid state dye-sensitized solar cell,titanium dioxide,energy-level alignment,ultraviolet photoelectron spectroscopy,metastable atom electron spectroscopy,perylene
更新于2025-09-23 15:23:52