- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Process control and quality assurance in remote laser beam welding by optical coherence tomography
摘要: Remote laser beam welding significantly outperforms conventional joining techniques in terms of flexibility and productivity. This process benefits in particular from a highly focused laser radiation and thus from a well-defined heat input. The small spot sizes of high brilliance laser beam sources, however, require a highly dynamic and precise positioning of the beam. Also, the laser intensities typically applied in this context result in high process dynamics and in demand for a method to ensure a sufficient weld quality. A novel sensor concept for remote laser processing based on optical coherence tomography (OCT) was used for both quality assurance and edge tracking. The OCT sensor was integrated into a 3D scanner head equipped with an additional internal scanner to deflect the measuring beam independently of the processing beam. With this system, the surface topography of the process zone as well as the surrounding area can be recorded. Fundamental investigations on aluminum, copper, and galvanized steel were carried out. Initially, the influence of the material, the angle of incidence, the welding position within the scanning field, and the temperature on the OCT measuring signal were evaluated. Based on this, measuring strategies for edge tracking were developed and validated. It was shown that orthogonal measuring lines in the advance of the process zone can reliably track the edge of a fillet weld. By recording the topography in the trailing area of the process zone, it was possible to assess the weld seam quality. Comparing the results to microscopic measurements, it was shown that the system is capable of clearly identifying characteristic features of the weld seam. Also, it was possible to observe an influence of the welding process on the surface properties in the heat-affected zone, based on the quality of the measuring signal.
关键词: inline quality assurance,optical coherence tomography,remote laser beam welding,process control
更新于2025-11-28 14:24:20
-
Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography
摘要: As a result of the rapidly growing importance of applications in electro mobility that require a precisely defined laser weld depth, the demand for inline process monitoring and control is increasing. To overcome the challenges in process data acquisition, this paper proposes the application of a novel sensor concept for deep penetration laser beam welding with high brilliance laser sources. The experiments show that optical coherence tomography (OCT) can be used to measure the weld depth by comparing the distance to the material surface with the distance to the keyhole bottom measured by the sensor. Within the presented work, the measuring principle was used for the first time to observe a welding process with a highly focused laser beam source. First, a preliminary experimental study was carried out to evaluate the influence of the angle of incidence, the material, and the weld joint geometry on the quality of the sensor signal. When using a multimode fiber laser with a focus diameter of 320 μm, the measurements showed a distinct behavior for aluminum and copper. The findings about the measurement signal properties were then applied to laser beam welding with a single-mode fiber laser with a spot diameter of only 55 μm. The spot diameter of the OCT measuring beam was about 50 μm and thus only slightly smaller than that of the single-mode processing beam. A wide variety of tests were carried out to determine the limits of the measurement procedure. The results show that the application of OCT allows inline monitoring of the weld depth using both a multimode and a highly focused single-mode laser beam. In addition, various influences on the signal were identified, e.g., the material-specific melt pool dynamics as well as several characteristic reflection and absorption properties.
关键词: high brilliance laser beam sources,weld depth measurement,optical coherence tomography,laser beam welding
更新于2025-11-28 14:24:20
-
Prospective comparison of (4S)-4-(3-18F-fluoropropyl)-l-glutamate versus 18F-fluorodeoxyglucose PET/CT for detecting metastases from pancreatic ductal adenocarcinoma: a proof-of-concept study
摘要: Purpose (4S)-4-(3-18F-Fluoropropyl)-L-glutamate (FSPG) positron emission tomography (PET) reflects system xC- (xCT) expression. FSPG PET has been used to detect brain, lung, breast and liver cancer with only modest success. There is no report on the use of FSPG PET in pancreatic ductal adenocarcinoma (PDAC), presumably because of normal xCT expression in the pancreas. Nonetheless, the tissue-specific expression of xCT in the pancreas suggests that FSPG PET may be ideal for identifying metastasized PDAC. Methods The performance of FSPG in detecting PDAC metastases was compared with that of 18F-fluorodeoxyglucose (FDG) in small-animal PET studies in seven PDAC tumour-bearing mice and in prospective PET/computed tomography (CT) studies in 23 patients with tissue-confirmed PDAC of stage III or stage IV. All PET/CT results were correlated with the results of histopathology or contrast-enhanced CT (ceCT) performed 3 and 6 months later. Results In the rodent model, FSPG PET consistently found more PDAC metastases earlier than FDG PET. FSPG PET showed a trend for a higher sensitivity, specificity and diagnostic accuracy than FDG PET in detecting PDAC metastases in a patient-based analysis: 95.0%, 100.0% and 95.7%, and 90.0%, 66.7% and 90.0%, respectively. In a lesion-based analysis, FSPG PET identified significantly more PDAC metastases, especially in the liver, than FDG PET (109 vs. 95; P = 0.0001, 95% CI 4.9–14.6). The tumour-to-background ratios for FSPG and FDG uptake on positive scans were similar (FSPG 4.2 ± 4.3, FDG 3.6 ± 3.0; P = 0.44, 95% CI ?1.11 to 0.48), despite a lower tumour maximum standardized uptake value in FSPG-avid lesions (FSPG 4.2 + 2.3, FDG 7.7 + 5.7; P = 0.002, 95% CI 0.70–4.10). Because of the lower physiological activity of FSPG in the liver, FSPG PET images of the liver are more easy to interpret than FDG PET images, and therefore the use of FSPG improves the detection of liver metastasis. Conclusion FSPG PET is superior to FDG PET in detecting metastasized PDAC, especially in the liver.
关键词: FSPG,Pancreatic cancer,Positron emission tomography,Liver metastases,xC transporter system
更新于2025-11-21 11:24:58
-
<i>In vivo</i> detection of endotracheal tube biofilms in intubated critical care patients using catheter-based optical coherence tomography
摘要: The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator-associated pneumonia (VAP) and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24 hr intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT-derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard-of-care clinical test reports. OCT and attenuation coefficient images from 4 subjects were positive for ETT biofilms and were negative for 2 subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm-positive and biofilm-negative groups (p < 10-5). OCT image-based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.
关键词: attenuation coefficient image,endotracheal tube,biofilm,optical coherence tomography,ventilator-associated pneumonia
更新于2025-11-21 11:24:58
-
AIP Conference Proceedings [Author(s) SILICONPV 2018, THE 8TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS - Lausanne, Switzerland (19–21 March 2018)] - Atom probe Tomography of fast-diffusing impurities and the effect of gettering in multicrystalline silicon
摘要: This article demonstrates an approach for multiscale characterisation of individual defects, such as grain boundaries, in multicrystalline silicon. The analysis techniques range from macroscale characterisation of average bulk lifetime, through photoluminescence to resolve spatial recombination, and finally to nanoscale analysis of the crystallographic characteristics and impurity decoration of the grain boundary using Transmission Kikuchi Diffraction and Atom Probe Tomography. This method can be used to characterise defects and their response to processing, such as gettering and hydrogen passivation. In this paper it is applied to the test case of Saw Damage Gettering on Red Zone High Performance Multicrystalline Silicon. In both as-cast and gettered samples, copper and chromium were observed at a recombination active, random angle grain boundary. After gettering the copper excess was found to decrease. In contrast, the slower diffusing chromium was found to increase, potentially indicating internal gettering. At a recombination inactive Σ3 grain boundary only oxygen was observed at the boundary before gettering, with no transition metals detected.
关键词: multicrystalline silicon,grain boundaries,gettering,impurities,Atom Probe Tomography
更新于2025-11-21 11:20:48
-
Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells
摘要: Post deposition treatments (PDT) by alkali fluorides applied to chalcopyrite-based absorbers have produced record efficiencies in thin-film solar devices in the past few years and recently the efficiency of 22.6 % was achieved with Cu(In,Ga)Se2 (CIGS) using rubidium fluoride (RbF) PDT. However, the effects of RbF-PDT towards changes in its interfacial and grain boundary (GB) properties are still not fully understood. In this work, cells with efficiency higher than 21% are investigated by combination of atom probe tomography (APT) and transmission electron microscopy (TEM) to show how changes in GB and interface chemistry may facilitate high efficiencies. APT studies, carried out at the interface between CIGS absorber and solution-grown CdS buffer layer, show In enrichment and Cu depletion along with traces of Rb. Our APT studies reveal higher amounts of Rb (1.5 at. %) and lower amounts of Na and K (<0.5 at. %) at GBs as compared with previous studies (on non-PDT samples) thus indicating substitution of Na and K by Rb. However, concentration of all alkali elements inside the grain bulk is below detection limit of APT. The concentration of Rb at the GBs in CIGS is measured depth-dependent using both APT and TEM, which consistently shows the increase in Rb towards the Mo back contact. In addition, a pronounced Cu depletion is observed at the GBs which might enhance hole-barrier properties of the GBs, thus improving charge carrier collection and hence the overall efficiency of the device. Thus, understanding effects of RbF-PDT at the atomic scale provides new insights concerning the further improvement of CIGS absorber and interfaces.
关键词: Cu(In,Ga)Se2,Thin-film solar cell,heterojunction,atom probe tomography,post deposition treatments,transmission electron microscopy
更新于2025-11-21 11:20:48
-
Structural characterization of tin nanocrystals embedded in silicon by atomic probe tomography
摘要: Tin nanocrystals embedded in silicon are studied by atom probe tomography and by photoluminescence spectroscopy in the 0.76–1.07 eV region of emission energies. The nanocrystals have been fabricated by molecular beam epitaxy followed by a post-growth annealing step at various temperatures. One particular sample, annealed at a temperature of 725 ?C, shows a distinctly higher optical activity. It is found, however, that the distinct behavior cannot be explained by variations in the nanocrystal composition or in the properties of Sn atoms dissolved in the surrounding Si matrix, which can be investigated by atom probe tomography.
关键词: Sn-nanocrystals,Photoluminescence,Atom probe tomography
更新于2025-11-21 11:20:42
-
One-pot bottom-up fabrication of biocompatible PEGylated WS2 nanoparticles for CT-guided photothermal therapy of tumors in?vivo
摘要: Background: Tungsten disulfide (WS2), which enjoyed a good potential to be a promising clinical theranostic agent for cancer treatment, is still subject to the tedious synthesis procedure. Methods: Here, we reported a one-pot 'bottom-up' hydrothermal strategy for the fabrication of PEGylated WS2 nanoparticles (NPs). The WS2-PEG nanoparticles were characterized systematically. The CT imaging and photothermal therapy against tumor as well as biosafety in vitro and in vivo were also investigated. Results: The obtained WS2-PEG NPs enjoyed obvious merits of good solubility and favorable photothermal performance. WS2-PEG NPs exhibited desirable photothermal ablation ability against cancer cells and cancer cell-bearing mice in vitro and in vivo. MTT assay and histological analysis demonstrated the low cytotoxicity and biotoxicity of WS2-PEG NPs, providing a valid biosafety guarantee for the coming biomedical applications. In addition, thanks to the obvious X-ray attenuation of W atom, the WS2-PEG NPs can also be served as a favorable contrast agent for CT imaging of tumors. Conclusion: WS2-PEG NPs has enjoyed a good potential to be a promising clinical CT-guided photothermal therapeutic agent against cancers.
关键词: Photothermal therapy,Computed tomography,WS2,Tumor,Nanoparticles
更新于2025-11-14 17:03:37
-
Photoacoustic temperature imaging based on multi-wavelength excitation
摘要: Building further upon the high spatial resolution offered by ultrasonic imaging and the high optical contrast yielded by laser excitation of photoacoustic imaging, and exploiting the temperature dependence of photoacoustic signal amplitudes, this paper addresses the question whether the rich information given by multispectral optoacoustic tomography (MSOT) allows to obtain 3D temperature images. Numerical simulations and experimental results are reported on agarose phantoms containing gold nanoparticles and the effects of shadowing, reconstruction flaws, etc. on the accuracy are determined.
关键词: photoacoustic imaging,absorption coefficient,finite difference,multispectral optoacoustic tomography
更新于2025-11-14 15:30:11
-
Microvascular Capillary Plexus Findings of Commotio Retinae on Optical Coherence Tomography Angiography
摘要: Optical coherence tomography (OCT) and histopathology features of commotio retinae (CR) have been established, but alterations of the microvascular macular capillary plexus on OCT angiography (OCTA) has not been previously studied. We present a 46-year-old man who sustained a tennis ball injury to the right eye with visual acuity reduction to 20/30 and grey-white deep macular discoloration, suggestive of CR. Spectral-domain OCT (SD-OCT) showed increased reflectivity and thickness of the ellipsoid zone (junction of photoreceptor inner and outer segments). OCTA revealed no apparent microvascular alterations (right versus left eye) in the foveal avascular zone superficial (0.42 vs. 0.43 mm2) and deep (0.45 vs. 0.44 mm2), superficial foveal capillary density (34.1 vs. 32.6%), and superficial parafoveal capillary density (55.2 vs. 52.2%). Deep macular capillary plexus and choriocapillaris were qualitatively comparable between the two eyes. At 2 months’ follow-up, SD-OCT had normalized. CR is characterized by disruption of the ellipsoid zone without detectable alteration of the capillary plexuses.
关键词: Optical coherence tomography angiography,Commotio retinae,Berlin’s edema,Spectral-domain optical coherence tomography,Traumatic maculopathy
更新于2025-09-23 15:23:52