- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Density Functional Theory Investigation of Nonlinear Optical Properties of T-Graphene Quantum Dots
摘要: Using density functional theory calculations, we have analyzed nonlinear optical properties of a series of T-graphene quantum dots differing in their shape and size. Electronic polarizability, first-order and second-order hyperpolarizability of these systems are investigated and shed light on their stability and electronic properties. Negative cohesive energy shows that they are energetically stable. The effect of size and incident frequency on their nonlinear responses are comprehensively discussed. Most of the systems exhibit strong NLO response and it enhanced in the presence of external field. All these systems show absorption maximum ranging from UV to visible window. Overall, this theoretical framework highlighted the nonlinear optical properties of T-graphene quantum dots that may provide valuable information in designing potential NLO materials.
关键词: T-graphene quantum dot,electron delocalization,nonlinear optical property,UV-visible absorption spectra,Density functional theory
更新于2025-09-16 10:30:52
-
Tailoring of graphene quantum dots for toxic heavy metals detection
摘要: The sensitivity of graphene quantum dots towards toxic heavy metals (THMs; Cd, Hg, Pb) can be improved through doping with nitrogen at the vacant site defects. Using density functional theory, we investigate the adsorption of THMs on the graphene quantum dots (GQDs) and nitrogen-coordinated defective GQDs (GQD@1N, GQD@2N, GQD@3N and GQD@4N) surfaces. Thermochemistry calculations reveal that the adsorption of Pb atom on the surfaces is more favorable than Cd and Hg adsorption. The decoration of the vacant defects with nitrogen on the GQD surface substantially increases the charge transfer and adsorption energy values of THMs on the GQD surface (GQD@4N > GQD@3N > GQD@1N > GQD@2N > GQD). The charge transfer and adsorption energy of lead on each of these surfaces are greater than those of cadmium and mercury (Pb > Cd > Hg). Quantum theory of atoms in molecules analysis and non-covalent interaction plots further validate this result while also confirming that Pb atom has a partially covalent and electrostatic nature of interaction at the nitrogen-coordinated vacant site defects. The electron density values—a criterion of bond strength—for the THM...N interactions are greater than for the THM…C interactions, confirming the observed adsorption energy trends of the THMs on the surfaces. The lowering of the HOMO–LUMO energy gap of the surfaces follows the order Pb > Cd > Hg and also results in increased electrical conductivity, which are consistent with the calculated adsorption energy trends. Significant changes in the energy gap and electric conductivity of the surfaces upon THMs adsorption make them promising sensors for metal detection. Finally, time-dependent density functional theory calculations showed that changes such as peak shifts, peak quenching and appearance of new peaks are seen in the UV–visible absorption spectra of the surfaces upon adsorption of THMs, wherein the shifts in peaks correspond to the magnitude of adsorption energy of THMs on the surfaces. These results should motivate the experimentalists towards using rational and systematic modulation of surfaces as sensors for heavy metal detection.
关键词: Adsorption energy,Toxic heavy metals,Charge transfer,UV–visible absorption spectra,Nitrogen doping,Density functional theory,HOMO–LUMO energy gap,Graphene quantum dots
更新于2025-09-16 10:30:52