修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

7 条数据
?? 中文(中国)
  • Improved Solar Energy Photoactivity over Defective BiOBr Ultrathin Nanosheets towards Pollutants Removal and Oxygen Evolution

    摘要: Defective BiOBr nanosheets with ultrathin thickness and surface confined pits have been synthesized through a dual control of cetyltrimethyl ammonium bromide (CTAB) and polyvinyl pyrrolidone (PVP). The photocatalytic activity of the obtained defective BiOBr nanosheets was evaluated for the removal of rhodamine B (RhB), ciprofloxacin (CIP) and oxygen evolution from water. The as-prepared defective BiOBr nanosheets displayed significantly increased activity for pollutant degradation and oxygen evolution. The enhanced photocatalytic activity was ascribed to the improved light harvesting, suppression of charge recombination, and an increase in the number of active sites for photocatalytic reaction. The electronic structure of the defective BiOBr ultrathin nanosheets with confined pits has been tuned and thus varied the photocatalytic mechanism for pollutant degradation. The active species have changed from hole for BiOBr nanoplates to superoxide radical (O2??) and hole for defective BiOBr nanosheets determined by ESR analysis and trapping experiments.

    关键词: Ultrathin nanosheets,Solar energy,Defects,BiOBr,Photocatalytic

    更新于2025-09-23 15:21:21

  • Synthesis of BiOCl Nanosheets by a Simple Ultrasonic Route

    摘要: Ternary bismuth oxyhalide (BiOX, X = F, Cl, Br, I) with layered structure have emerged as promising photocatalysts for water splitting and environmental remediation. Ultrathin BiOCl nanosheets were achieved by a simple ultrasound way. The product was characterized by XRD, SEM and TEM.

    关键词: Ultrathin,Nanosheets,BiOX,Ultrasonic

    更新于2025-09-23 15:21:01

  • Ultrathin two-dimensional conjugated metala??organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis

    摘要: Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have recently emerged for potential applications in (opto-)electronics, chemiresistive sensing, and energy storage and conversion, due to their excellent electrical conductivity, abundant active sites, and intrinsic porous structures. However, developing ultrathin 2D c-MOF nanosheets (NSs) for facile solution-processing and integration into devices remains a great challenge, mostly due to unscalable synthesis, low yield, limited lateral size and low crystallinity. Here, we report a surfactant-assisted solution synthesis toward ultrathin 2D c-MOF NSs, including HHB-Cu (HHB=hexahydroxybenzene), HHB-Ni and HHTP-Cu (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene). For the first time, we achieve single-crystalline HHB-Cu(Ni) NSs featured with a thickness of 4-5 nm (~8-10 layers) and a lateral size of 0.25-0.65 μm2, as well as single-crystalline HHTP-Cu NSs with a thickness of ~5.1±2.6 nm (~10 layers) and a lateral size of 0.002-0.02 μm2. Benefiting from the ultrathin feature, the synthetic NSs allow fast ion diffusion and high utilization of active sites. As a proof of concept, when serving as a cathode material for Li-ion storage, HHB-Cu NSs deliver a remarkable rate capability (charge within 3 min) and long-term cycling stability (90% capacity retention after 1000 cycles), superior to the corresponding bulk materials and other reported MOF cathodes.

    关键词: Li-ion batteries,Two-dimensional conjugated metal-organic frameworks,electrochemical performance,surfactant-assisted synthesis,ultrathin nanosheets

    更新于2025-09-23 15:19:57

  • Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets

    摘要: As an energy-efficient and environmental friendliness method, solar sunlight-driven photo-oxidation catalysis process for organic chemicals synthesis has gained enormous attention, but still faces huge challenge in developing highly-efficient photocatalysts material. Two-dimensional materials engineering and surface defect engineering of photocatalysts both provide an effective strategy to improve the catalytic activity. Inspired by these pathway, we design and synthesize ultrathin porous ZnO nanosheets featuring abundant oxygen vacancies specific to producing dihydroxybenzenes based on a photocatalytic oxidation process. Several valid characterizations had been employed to discern the structural character of the obtained model catalyst, revealing that the resultant ZnO sheets afford an average thickness of 3 nm, and abundant surface porosity, thereby contributing to the rich oxygen vacancies. Such a structure could generate a synergistic effect to enhance the optical absorption and improve the transportation rate of photogenerated charge carriers from the materials design. As expected, the specific ultrathin ZnO nanosheets exhibited a greatly-improved photocatalytic activity for oxidation of phenol to dihydroxybenzenes (31.5% conversion & almost 76.7% selectivity of DHB), near 3 and 4 times higher, respectively than its counterparts that one with few oxygen vacancies and Bulk-ZnO. Impressively, the obtained catalyst showed durable catalytic activity without any activity loss during the five recycling. Finally, the feasible oxidation mechanism was proposed and testified by the controlled scavenger experiments. This study provides a novel reference on how to design high-performance photocatalytic material.

    关键词: oxygen vacancies,ZnO,ultrathin nanosheets,oxidation of phenol,photocatalytic

    更新于2025-09-12 10:27:22

  • Large-Scale Growth of Ultrathin Low-Dimensional Perovskite Nanosheets for High-Detectivity Photodetectors

    摘要: Low-dimensional organic-inorganic hybrid perovskites have demonstrated to be promising semiconductor materials due to their unique optoelectronic properties, however, the controllable growth of high-quality ultrathin 2D perovskites with large lateral dimension still faces great challenges. Herein, we report the controllable growth of large-scale ultrathin 2D (C6H5(CH2)3NH3)3Pb2I7 ((PPA)3Pb2I7) perovskite nanosheets (NSs) using a facile antisolvent-assisted crystallization approach under mild condition. As a result, the well-defined regular-shaped (PPA)3Pb2I7 NSs, with the largest lateral size over 100 micrometers, have been successfully synthesized, which is more than several ten times larger than that of other 2D perovskites NSs previously reported. Moreover, the thickness of the achieved 2D perovskite NSs can be well-tuned by altering the concentration of the precursor solution, with the smallest thickness down to ~4.7 nm. More importantly, the photodetectors based on the high-quality (PPA)3Pb2I7 perovskites exhibit fascinating performance, including an extremely low dark current (~1.5 pA), fast response/recovery rate (~850/780 μs) and high detectivity (~1.2×1010 Jones). This work provides a simple and promising strategy to controllably grow large-scale and ultrathin 2D perovskite NSs for low-cost and high-performance optoelectronic devices.

    关键词: low-dimensional perovskite,antisolvent-assisted crystallization approach,large size,photodetectors,ultrathin,nanosheets

    更新于2025-09-12 10:27:22

  • Synthesis and improved photoluminescence of hexagonal crystals of Li <sub/>2</sub> ZrF <sub/>6</sub> :Mn <sup>4+</sup> for warm WLED application

    摘要: Engineering compositions, structures, and defects can endow nanomaterials with optimized catalytic properties. Here, we report that cobalt oxide (CoOx) ultrathin nanosheets (UTNS, ~1.6 nm thick) with a large number of oxygen defects and mixed cobalt valences can be obtained through a facile one-step hydrothermal protocol. The large number of oxygen defects make the ultrathin CoOx nanosheet a superior OER catalyst with low overpotentials of 315 and 365 mV at current densities of 50 and 200 mA cm?2, respectively. The stable framework-like architectures of the UTNS further ensure their high OER activity and durability. Our method represents a facile one-step preparation of CoOx nanostructures with tunable compositions, morphologies, and defects, and thus promotes OER properties. This strategy may find its wider applicability in designing active, robust, and easy-to-obtain catalysts for OER and other electrocatalytic systems.

    关键词: ultrathin nanosheets,oxygen evolution reaction,electrocatalysis,hydrothermal synthesis,cobalt oxide

    更新于2025-09-11 14:15:04

  • MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction

    摘要: Reducing carbon dioxide (CO2) to various value-added chemical products by photocatalysis could effectively alleviate the serious problems of global warming and energy shortages. Currently, most commonly prepared photocatalysts present poor performance under visible light irradiation. In this study, we adopted a facile, scalable and controllable approach to prepare ultrathin two-dimensional (2D) porous Co3O4 catalysts (Co3O4-NS) by air calcining of the ultrathin metal-organic framework (MOFs) nanosheet templates to validly reduce CO2 with a Ru-based photosensitizer under visible light irradiation. Benefitting from the structural nature of MOFs precursors, the calcined Co3O4-NS inherit the morphology of 2D and well-developed porosity, which support the transport of electrons, enhance the adsorption of CO2 molecules, and render abundant catalytic sites for CO2 activation. As a result, the CO generation rate is approximately 4.52 μmol·h-1 with selectivity of 70.1%, which is superior to the Co3O4 bulk catalysts (Co3O4-BK). Additionally, density functional theory (DFT) calculations reveal that the model of Co3O4 monolayer has stronger CO2 adsorption energy than that of the Co3O4 bulk, which is beneficial for the CO2-to-CO conversion. This MOF-engaged strategy provides new insight into the controlled synthesis of advanced ultrathin holey nanosheets to improve the efficiency of photocatalytic CO2 reduction.

    关键词: ultrathin nanosheets,Co3O4,photocatalysis,MOFs derived,CO2 reduction

    更新于2025-09-04 15:30:14