- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- imgae sensor
- internet of things
- drone
- visible light ID
- Signal-to-Noise Ratio (SNR)
- Infinite Gain Multiple Feedback (IGMF)
- Visible Light Communications (VLC)
- LED
- Trans-Impedance Amplifier (TIA)
- Optoelectronic Information Science and Engineering
- Tohoku University
- University of Northumbria
- University of Huddersfield
-
Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics
摘要: The degradation of tetracycline by silver vanadate (AgVO3), graphite-like carbon nitride (g-C3N4) and their composites was studied by visible light photocatalysis. Their structures and morphologies were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Their degradation intermediates were analyzed by GC-MS. Nanorod silver vanadate was synthesized by hydrothermal method. The results show that the gap between nanorods is reduced by adding spinning carbon nitride, and the photocatalytic performance of the composite is stronger than that of single material. The reaction rate constants of Ag-AgVO3/g-C3N4 composites were 0.0298 min-1, 2.4 and 2.0 times that of g-C3N4 (K=0.0125 min-1) and AgVO3 (K=0.0152 min-1), respectively. At 120 minutes, the degradation rate of the composites reached 83.6%. The degradation of tetracycline was confirmed by GC-MS, and a possible degradation process was proposed.
关键词: Photo-catalysis,Carbon nitride,Antibiotics,Visible light,Silver vanadate
更新于2025-11-21 10:59:37
-
Construction of novel Z-scheme Ag/ZnFe2O4/Ag/BiTa1-xVxO4 system with enhanced electron transfer capacity for visible light photocatalytic degradation of sulfanilamide
摘要: A novel Z-scheme system, Ag/ZnFe2O4/Ag/BiTa1-xVxO4 with enhanced electron transfer capacity was constructed for degrading sulfanilamide (SAM) using solar light. The photocatalytic activity of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 was investigated. The effects of the mass ratio (ZnFe2O4:BiTaO4), doped V dose, Ag wt.% content, and irradiation time on the catalytic performance were evaluated. The reasonable mechanism of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 solar photocatalytic degradation was also presented. These results reveal Ag/ZnFe2O4/Ag/BiTa1-xVxO4 possesses enhanced photocatalytic performance. The loaded Ag as electron mediator increases the electron transfer rate. Particularly, the doped V and the Fe ions from ZnFe2O4 form a powerful electron driving force, which enhances the electron transfer capacity. Ag/ZnFe2O4/Ag/BiTa1-xVxO4 shows optimal photocatalytic performance at 2.0 wt.% Ag and 0.5% doped V dose (ZnFe2O4:BiTaO4=1.0:0.5). Also, Ag/ZnFe2O4/Ag/BiTa1-xVxO4 exhibits high stability and repeatability in photocatalytic degradation. Several active species (?OH, ?O2?, and h+) are produced in the Z-scheme photodegradation of SAM. These results on the enhanced photocatalytic activity of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 are ascribed to synergistic photocatalytic effects of ZnFe2O4 and BiTa1-xVxO4 mediated through Ag and driven by doped V and Fe ions. Therefore, the Z-scheme Ag/ZnFe2O4/Ag/BiTa1-xVxO4 photocatalytic technology proves to be promising for the solar photocatalytic treatment of antibiotics under solar light.
关键词: visible light,Electron transfer capacity,Ag/ZnFe2O4/Ag/BiTa1-xVxO4,photocatalytic,sulfanilamide
更新于2025-11-21 10:59:37
-
Synthesis of MoS <sub/>2</sub> /TiO <sub/>2</sub> Nanophotocatalyst and Its Enhanced Visible Light Driven Photocatalytic Performance
摘要: Molybdenum disulfide (MoS2), as a typical layered transition metal sulfide, has been widely used in photocatalysis. Here, we report layered MoS2 nanosheet-coated TiO2 heterostructures that were prepared using a simple photo-assisted deposition method. The as-prepared samples were investigated in detail by using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Results demonstrated that the MoS2 nanosheets uniformly covered the outer surface of TiO2. The visible light-sensitive photocatalytic activity was evaluated by the removal of methylene blue (MB) and 2-chlorophenol (2-CP) in aqueous solution. Thus, the MoS2/TiO2 heterostructures exhibited improved photocatalytic degradation activity under visible light compared with the pure TiO2. Under visible light irradiation for 90 min, the degradation efficiencies of MB and 2-CP over the MoS2/TiO2 sample (sunlight irradiation time: 30 min) are as high as 93.6% and 70.6%, respectively. Furthermore, the corresponding mechanism of enhanced photocatalytic activity is proposed on the basis of the comprehensively investigated results from the radical trapping experiments, photoluminescence spectroscopy, and electron spin resonance analysis. The hole oxidation, hydroxyl radicals, and superoxide anion radicals act as the active species simultaneously in the photodegradation of the dye molecules. However, of these species, hole oxidation played the most important roles in the photocatalytic reaction.
关键词: Photocatalytic,MoS2,Visible Light
更新于2025-11-20 15:33:11
-
Visible-Light Plasmonic Enhancement of Catalytic Activity of Anisotropic Silver Nanoparticles
摘要: Synthesis of silver nanoparticles (AgNPs) in presence of copper salt (as the etchant) led to the formation of nanoparticle samples with different fractions of anisotropic particles. The proportion of anisotropic nanoparticles decreased with increase in ratio of precursor Cu salt in the preparation protocol. These AgNPs samples were found to catalyse p-nitrophenol reduction by glycerol and Fenton oxidation of methyl orange. The catalytic activity of these AgNPs samples for these reactions increased with the fraction of anisotropic nanoparticles in the catalyst samples. On conducting these reactions under cool white LED visible light, the catalytic activity of AgNPs catalyst samples increased by 2 to 3 times compared to that observed in dark. The photo-Fenton MO degradation catalytic activity obtained is among the best reported in literature. However, the order of the reaction did not change whether the reaction was conducted under visible light or in dark. Direct plasmonic catalytic mechanisms are proposed to explain the enhancement in reactivity under visible light.
关键词: Plasmonic Photocatalysis,Visible Light,Anisotropic Silver Nanoparticles
更新于2025-11-19 16:56:42
-
Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups
摘要: Photochromic diarylethenes have been widely used in many fields. However, their cyclization process must be induced by UV light. In this article, a simple strategy is developed by extending π-conjugation with electron donating groups. The modified dirylethene derivative can photocyclolize under 405-nm light with a good photochromic efficiency. Meanwhile, its absorption and moderate fluorescence can be switched effectively in both directions by visible lights (405 and 520 nm, respectively) in different solutions and in living cells. We believe that this simple method will become a versatile strategy for developing various dirylethylenes with visible-light photochromism.
关键词: fluorescence photoswitching,diarylethylenes,photoreaction quantum yield,visible-light photochromism
更新于2025-11-19 16:56:35
-
Visible light-driven photoelectrocatalytic degradation of Acid Yellow 17 using Sn3O4 flower-like thin films supported on Ti substrate (Sn3O4/TiO2/Ti)
摘要: This article reports a new method for preparing mixed valence tin oxide (Sn3O4) flower-like nanostructures using a microwave-assisted route. Thin-film Sn3O4/TiO2/Ti electrodes demonstrated highly efficient visible light driven photocatalytic degradation of monoazo acid yellow 17 (AY17) dye, reaching 95% color removal after 60 min at pH 2. Moreover, under low bias potential (0.5 V), the photoelectrocatalytic efficiency increased to 97% color removal and 83% removal of total organic carbon at a kinetic rate almost 3 times higher than in photocatalysis. Liquid chromatography mass spectrometry was used to identify intermediate formation, and oxidation performance was proposed for photocatalytic and photoelectrocatalytic degradation with no organics identified after 120 min of treatment. The results indicate that Sn3O4/TiO2/Ti photoelectrodes offer a simple, green method for wastewater treatment employing visible light source.
关键词: Dye degradation,Photoelectrocatalysis,Microwave-assisted hydrothermal synthesis,Sn3O4,Visible-light photocatalysis
更新于2025-11-19 16:56:35
-
Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: Energy saving and visible photocatalytic self-cleaning performance
摘要: Series of novel K0.3WO3/Ag2O nanocomposites were successfully prepared by simple two steps method. An exciting fact that near-infrared light shielding and visible photocatalytic self-cleaning effects are integrated into the K0.3WO3/Ag2O film (weight ratio of K0.3WO3 to Ag2O = 30) could offer significant potential applications in smart windows. Furthermore, the optical properties and photocatalytic activity of the composites could be tuned by adjusting the weight ratio of K0.3WO3 to Ag2O. The obtained K0.3WO3/Ag2O films presented enhanced photocatalytic self-cleaning performance compared with pure K0.3WO3 under visible light irradiation. The improved self-cleaning performance of the K0.3WO3/Ag2O composites was ascribed to a combined contribution of the matched energy band structures and boosted separation efficiency of photo-generated carriers. An approximately 2.3°C-3.4 °C decrease in inner temperature was obtained for the heat box covered with K0.3WO3/Ag2O coated glass. Therefore, the proposed K0.3WO3/Ag2O (weight ratio of K0.3WO3 to Ag2O = 30) smart coating is a promising material for self-cleaning energy-saving windows.
关键词: Self-cleaning,Visible photocatalytic,Ag2O,KxWO3,Tungsten bronze,NIR shielding
更新于2025-11-19 16:56:35
-
A novel photocatalyst, Y2SiO5:Pr3+,Li/Pt-NaNbxTa1?xO3, for highly efficient photocatalytic hydrogen evolution under visible-light irradiation
摘要: In this work, Y2SiO5:Pr3+,Li, as an excellent up-conversion luminescence agent from visible-light to ultraviolet-light, is synthesized by using sol-gel method. And then, a series of Y2SiO5:Pr3+,Li/NaNbxTa1?xO3 (x = 0.00, 0.25 and 0.50) with different amounts of Y2SiO5:Pr3+,Li are prepared by using hydrothermal method. The prepared samples are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), UV–vis absorption spectroscopy and photoluminescence spectroscopy (PL). The activities of Y2SiO5:Pr3+,Li/Pt-NaNbxTa1?xO3 are investigated through photocatalytic hydrogen evolution in 10 vol% methanol solution under visible-light irradiation. The influences of Nb content in NaNbxTa1?xO3, mass ratio of Y2SiO5:Pr3+,Li and NaNb0.5Ta0.5O3, visible-light irradiation time and reuse-times are examined on the visible-light photocatalytic hydrogen evolution. The experimental results showed that the prepared Y2SiO5:Pr3+,Li/Pt-NaNb0.5Ta0.5O3 with 0.4:1.0 mass ratio of Y2SiO5:Pr3+,Li and NaNb0.5Ta0.5O3 and 0.25 wt% Pt loading displayed a highest evolved hydrogen activity under visible-light irradiation. This study may provide some significant references for large scale photocatalytic hydrogen evolution utilizing solar energy.
关键词: Visible-light photocatalyst (Y2SiO5:Pr3+,Li/Pt-NaNb0.5Ta0.5O3),Photocatalytic hydrogen evolution,Pt loading,Nb-substituted NaTaO3,Up-conversion luminescence agent (Y2SiO5:Pr3+,Li)
更新于2025-11-19 16:51:07
-
Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species
摘要: Precise engineering of the cocatalyst-photocatalyst interface and optimization of the cocatalyst dispersion are essential for improving the activity of particulate semiconductor photocatalysts. Herein, we report the effects of varying the conditions used to load cobalt oxide (CoOx) as a cocatalyst on the O2 evolution activity of a particulate BaTaO2N photocatalyst, based on trials in an aqueous silver nitrate solution under visible light irradiation. Annealing under an N2 flow after loading the Co species increased the O2 evolution rate threefold compared to that obtained following conventional annealing under an NH3 flow. Subsequent annealing under an H2 atmosphere exposed the BaTaO2N surface as a result of the aggregation of CoOx particles, and further enhanced the photocatalytic O2 evolution by a factor of two, yielding an apparent quantum efficiency of 0.55% at 420 nm. These results indicate the importance of intimate contact between cocatalyst particles and the photocatalyst, as well as the necessity of exposing the photocatalyst surface to make it available for reduction reactions during photocatalytic water oxidation.
关键词: Cocatalyst,Dispersion,Oxynitride,Visible light
更新于2025-11-19 16:51:07
-
Lewis acid activated CO <sub/>2</sub> reduction over a Ni modified Ni–Ge hydroxide driven by visible-infrared light
摘要: Improvement of light harvesting and reaction kinetics is of great importance for achieving efficient solar-driven CO2 reduction. Here, a Ni modified low-crystalline Ni–Ge containing hydroxide with Lewis acid sites was synthesized in highly reductive NaBH4 solution and exhibited 9.3 μmol gcat.?1 h?1 CO and 3.5 μmol gcat.?1 h?1 CH4 generation rates under visible light irradiation, and even achieved a 3.8 μmol gcat.?1 h?1 CO evolution under infrared light irradiation. The wide-spectrum light harvesting resulted from the light absorption from the localized surface plasmonic resonance of Ni nanoparticles. In addition, the Lewis acid can activate CvO bonds to decrease the kinetic barriers of CO2 reduction. The design concept that rationally combines the advantages of expanding the spectral response and activating CO2 may offer a new strategy for efficient solar energy utilization.
关键词: visible-infrared light,plasmonic effect,Lewis acid,CO2 reduction,photocatalyst
更新于2025-11-19 16:51:07