修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Electrochromic Properties of Nanostructured WO <sub/>3</sub> Thin Films Deposited by Glancing‐Angle Magnetron Sputtering

    摘要: Tungsten oxide thin films are prepared by glancing-angle reactive magnetron sputtering at room temperature. The surface and cross-section morphologies are characterized by FE-SEM and TEM. The electrochromic properties of the thin films are studied using a three-electrode system in 1 m LiClO4/PC solution. When the glancing angle is kept at 80°, a nanocolumnar structured film is obtained. This nanocolumnar structured film shows a lower driving potential and better stability compared to the dense film. The charge capacity per unit area of the nanocolumnar structured film is determined to be 30.85 mc cm?2. The diffusion rates of injection and detachment of ions are determined to be Din = 6.57 × 10?10 cm2 s?1 and Dde = 6.55 × 10?10 cm2 s?1 under an applied potential of ±1.2 V, respectively. The optical modulation amplitude of the nanocolumnar structured film reaches 65% at a wavelength of 600 nm and the optical density is superior to that of the dense film.

    关键词: nanostructured,electrochromic,WO3 thin films,glancing angle,magnetron sputtering

    更新于2025-11-14 17:03:37

  • Phase-Control-Enabled Enhancement in Hydrophilicity and Mechanical Toughness in Nanocrystalline Tungsten Oxide Films for Energy-Related Applications

    摘要: We report on the phase-control-enabled enhancement in the hydrophilicity and mechanical properties of nanostructured WO3 films for energy-related applications. Nanostructured WO3 films were fabricated by utilizing reactive magnetron sputter deposition onto silicon (100) substrates with varying deposition temperature (Ts = 25?500 °C) at a fixed oxygen partial pressure of ~4 mTorr. Extensive characterization performed indicates that the fundamental surface/interface structure?phase?hydrophilicity?mechanical property correlation enables tailoring nanocrystalline WO3 films to meet the requirements of various technological applications. Crystal structure, surface/interface morphology, and microstructure characterization indicate the deposition processing conditions induce phase transformations and surface/interface quality variation, which in turn controls the hydrophilicity and mechanical behavior of WO3 films. Carefully tuned processing conditions induce an amorphous to crystalline structural transformation, which progresses through amorphous to monoclinic to tetragonal phases, coupled with variation in surface roughness and crystallite size. Mechanical characterization using nanoindentation reveals that the mechanical response, in terms of hardness (H), elastic modulus (E), and scratch parameters, of WO3 films is highly sensitive to their phase and microstructure evolution. Nanostructured WO3 films crystallized in monoclinic phase exhibit superior mechanical response compared to either amorphous or tetragonal phase WO3 films. The maximum hardness (~38 GPa) and elastic modulus (~320 GPa) values were obtained for WO3 films deposited at Ts = 400 °C. The phase transformation sequence coupled with surface/interface structure affects the contact angle values significantly. The contact angle decreases significantly from 70° to nearly 5° with variation in phase, microstructure, and surface/interface quality of WO3 films. A direct structure?phase?microstructure?hydrophilicity?mechanical property relationship found suggest that tuning properties of WO3 films for photoelectrochemical, photocatalytic, and energy-related applications can be achieved by tuning the deposition conditions and controlling the phase at the nanoscale dimensions.

    关键词: WO3 thin films,hydrophilicity,phase transformation,nanostructure

    更新于2025-09-23 15:19:57