修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

826 条数据
?? 中文(中国)
  • Solar water splitting over Rh <sub/>0.5</sub> Cr <sub/>1.5</sub> O <sub/>3</sub> -loaded AgTaO <sub/>3</sub> of a valence-band-controlled metal oxide photocatalyst

    摘要: Improvement of water splitting performance of AgTaO3 (BG 3.4 eV) of a valence-band-controlled photocatalyst was examined. Survey of cocatalysts revealed that a Rh0.5Cr1.5O3 cocatalyst was much more effective than Cr2O3, RuO2, NiO and Pt for water splitting into H2 and O2 in a stoichiometric amount. The optimum loading amount of the Rh0.5Cr1.5O3 cocatalyst was 0.2 wt%. The apparent quantum yield (AQY) at 340 nm of the optimized Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 photocatalyst reached to about 40%. Rh0.5Cr1.5O3(0.2 wt%)/AgTaO3 gave a solar to hydrogen conversion efficiency (STH) of 0.13% for photocatalytic water splitting under simulated sunlight irradiation. Bubbles of gasses evolved by the solar water splitting were visually observed under atmospheric pressure at room temperature.

    关键词: Rh0.5Cr1.5O3 cocatalyst,valence-band-controlled photocatalyst,solar water splitting,apparent quantum yield,AgTaO3,solar to hydrogen conversion efficiency

    更新于2025-11-19 16:51:07

  • Visible-Light Overall Water Splitting by CdS/WO <sub/>3</sub> /CdWO <sub/>4</sub> Tricomposite Photocatalyst Suppressing Photocorrosion

    摘要: Photocatalytic water splitting under visible light has attracted attention as a possible solution to the energy exhaustion problem. Hitherto, water splitting has been generally achieved using several oxynitrides, oxysul?des, and nitrides, and only a few studies report water splitting using cadmium sul?de (CdS) as a photocatalyst. A major reason for this is that CdS undergoes photocorrosion. In this study, we achieved an overall water splitting under visible light using a CdS/WO3/CdWO4 tricomposite photocatalyst. In the process, photocorrosion of CdS was suppressed by covering it with WO3 and CdWO4, and the oxidation reaction progressed in WO3 by the Z-scheme type photocatalytic reaction.

    关键词: cadmium tungstate,tungsten oxide,photocorrosion,water splitting,cadmium sul?de,Z-scheme

    更新于2025-11-19 16:51:07

  • Poly(1,4-di(2-thienyl))benzene Facilitating Complete Light-Driven Water Splitting under Visible Light at High pH

    摘要: The recent discovery that metal-free polyterthiophene (PTTh) prepared by iodine-vapor-assisted polymerization (IVP) can catalyze the hydrogen evolution reaction (HER) when illuminated, and this light-enhanced electrolysis expresses a non-Nernstian relation with pH, provides the foundation for further improvement of the photovoltage of the reaction by engineering the band structure of the light-absorbing polymer. Deviating from an all-thiophene backbone, using poly(1,4-di(2-thienyl))benzene (PDTB) lowers the highest occupied molecular orbital level by ≈0.3 eV compared with polythiophene, and PDTB simultaneously maintains the photoelectrocatalytic properties without an all-thiophene backbone, resulting in very high conversion rate of 600 mmol(H2) h?1 g?1 at 0 V versus the reversible hydrogen electrode (RHE) at pH 11. PDTB shows the same non-Nernstian behavior as PTTh with increasing onset potential (versus RHE) at higher pH, and the open circuit potential on PDTB under visible light reaches 1.4 V versus RHE at pH 12. The PDTB photocathode thus produces a photovoltage above the theoretical potential for the complete water-splitting (1.229 V) and is indeed able to produce hydrogen in a one-photon-per-electron light-driven water splitting setup with MnOx as the anode at a rate of 6.4 mmol h?1 gPDTB?1.

    关键词: high pH,photocathodes,water splitting,hydrogen evolution,poly(1,4-di(2-thienyl))benzene

    更新于2025-11-19 16:51:07

  • Synergistic effect of g-C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation

    摘要: Here, we develop a strategy to improve the visible-light-driven photocatalytic hydrogen evolution activity of g-C3N4 by compositing it with low-cost Ni(OH)2 nanoplatelets and inexpensive and earth-abundant halloysite nanotubes. The Ni(OH)2@g-C3N4/halloysite nanocomposite photocatalyst with different amounts of Ni(OH)2 (0.5–10 wt%) were prepared, and a synergistic effect of Ni(OH)2 platelets and halloysite nanotubes on physicochemical properties and photocatalytic hydrogen evolution activity of g-C3N4 was investigated. As expected, the Ni(OH)2@g-C3N4/halloysite nanocomposite photocatalyst prepared with 1 wt% Ni(OH)2 exhibited the highest photocatalytic hydrogen evolution rate (18.42 μmol·h–1) which is much higher than that of g-C3N4 (0.43 μmol·h–1) and Ni(OH)2@g-C3N4 (9.12 μmol·h–1). Such enhancement in photocatalytic activity of Ni(OH)2@g-C3N4/halloysite nanocomposite photocatalyst is attributed to efficient transfer of photogenerated electrons from the g-C3N4 to Ni(OH)2 cocatalyst interface and trapping of photogenerated holes on the negatively charged surfaces of halloysite nanotubes. In addition, adsorption affinity of the water and methanol molecules was modeled using different surfaces of Ni(OH)2, halloysite-7?, and g-C3N4 and it is found that combining the g-C3N4 with halloysite-7? and Ni(OH)2 can significantly improve the adsorption of water and methanol molecules on the surface of the developed nanocomposite. This study offers a simple approach for developing an efficient and inexpensive nanocomposite for effective and applied photocatalytic water splitting methodology for hydrogen production and other possible optoelectronic and photocatalytic applications.

    关键词: Halloysite,g-C3N4,Water splitting,Nanocomposite,Hydrogen production,Ni(OH)2

    更新于2025-11-19 16:51:07

  • Distinguishing the effects of altered morphology and size on visible-light-induced water oxidation activity and photoelectrochemical performance of BaTaO2N crystal structures

    摘要: Factors, including crystallinity, morphology, size, preferential orientation, growth, composition, porosity, surface area, etc., can directly influence the optical, charge-separation, charge-transfer and water oxidation and reduction properties of particle-based photocatalysts. Therefore, these factors must be considered when designing high-performance particle-based photocatalysts for solar water splitting. Here, a flux growth method was applied to alter the morphology and size of the Ba5Ta4O15 precursor oxide crystals using BaCl2, KCl, RbCl, CsCl, KCl+BaCl2 and K2SO4 at different solute concentrations, and the impact of nitridation with and without KCl flux was studied. Specifically, the effects of altered morphology and size on the visible-light-induced water oxidation activity and photoelectrochemical performance of the BaTaO2N crystal structures were investigated. Upon nitridation, the samples became porous due to the lattice shrinkage caused by the replacement of 3 O2? with 2 N3? in the anionic network. The BaTaO2N crystal structures obtained by nitridation without KCl flux show higher surface areas than do their counterparts prepared by nitridation with KCl flux because of the formation of porous networks. All samples exhibited a high anodic photocurrent upon nitridation without KCl flux compared with that of the samples obtained by nitridation with KCl flux. The findings demonstrate that it is important to specifically engineer photocatalytic crystals to reach their maximum potential in solar water splitting.

    关键词: Water splitting,Visible light,Flux growth,Crystal size,Morphology,BaTaO2N

    更新于2025-11-19 16:51:07

  • Cu3MS4 (M=V, Nb, and Ta) and their solid solutions with sulvanite structure for photocatalytic and photoelectrochemical H2 evolution under visible light irradiation

    摘要: Solid solutions with a sulvanite structure between Cu3VS4 and either Cu3NbS4 or Cu3TaS4 (Cu3Nb1-xVxS4, Cu3Ta1-xVxS4) were successfully prepared by a solid-state reaction. Their band gaps were 1.6–1.7 eV corresponding to the absorption of a wide range of visible light. Ru-cocatalyst loaded Cu3MS4 (M=V, Nb, Ta), Cu3Nb1-xVxS4, and Cu3Ta1-xVxS4 showed photocatalytic activities for sacrificial H2 evolution under visible light irradiation. Most solid solutions showed better activities than the single Cu3MS4 (M=V, Nb, Ta). Cu3MS4 (M=V, Nb), Cu3Nb1-xVxS4, and Cu3Ta1-xVxS4 also functioned as a photoelectrode and gave cathodic photocurrents under visible light irradiation, indicating a p-type semiconductor character. Cu3Nb0.9V0.1S4 showed the best photocatalytic and photoelectrochemical performances. When Ru-loaded Cu3Nb0.9V0.1S4 was used as a photocathode with a CoOx-loaded BiVO4 photoanode, photoelectrochemical water splitting proceeded under simulated sunlight irradiation without an external bias.

    关键词: Energy conversion,Water splitting,Heterogeneous catalysis,Photocatalysis

    更新于2025-11-19 16:51:07

  • Bismuth vanadate single crystal particles modified with tungsten for efficient photoeletrochemical water oxidation

    摘要: Highly efficient water oxidation utilizing visible light is a crucial step in water splitting. Bismuth vanadate (BiVO4) single crystal particles have attracted much attention in water oxidation recently, owing to their outstanding physicochemical properties and exposed active facets. The performance of BiVO4 single crystal particles is generally hindered by their poor conductivity and worse charge separation. Doping BiVO4 single crystal particles with other metal elements has been considered as an efficient way to improve their conductivity, charge separation and performance. However, there are few successful reports, because structure and morphology of BiVO4 single crystal particles are easily changed by addition of impurities. Here, we present that W doped BiVO4 crystal particles were successfully achieved by developing a simple impregnation method following with a high temperature annealing process. The obtained W-BiVO4 single crystal particles exhibited improved conductivity, carrier density and thereby enhanced activity for water oxidation. The solar energy conversion of the W-BiVO4 electrode was doubled compared with the pristine one. Thus, this work opens an avenue for developing efficient single crystal particle photocatalysts.

    关键词: BiVO4,Tungsten,Single crystal particles,Water oxidation

    更新于2025-11-19 16:51:07

  • Preparation of visible-light-responsive photocatalyst by dehydronitrization of gallium oxide hydroxide for hydrogen evolution from water

    摘要: We have performed dehydronitrization of GaOOH under NH3 flow to produce nitrogen doped Ga2O3 and examined their photocatalytic activities for H2 evolution from an aqueous methanol solution under visible light irradiation. GaOOH was synthesized by hydrothermal treatment and dehydronitrided at a temperature ranging from 773 K to 1273 K under NH3 flow. At first, GaOOH was dehydrided to Ga2O3 under 873 K and followed nitrization. With increasing dehydronitrization temperature, the products were getting closer to full nitride (GaN). Among all dehydronitrided samples, only one sample sintered at 1173 K showed photocatalytic activity under visible light irradiation and its crystalline structure had not changed before and after the reactions, while other samples did not show the activity and were oxidized to GaOOH. From thermodynamical aspect, if nitrogen dissolved into oxide or making oxynitride, its chemical potential must be lower than that of N in GaN. Therefore, there should be some gallium oxinitride phase like GaNyO3-x stable in water showing photocatalytic activity.

    关键词: GaOOH,Photocatalyst,Water splitting,Dehydronitrization,GaN

    更新于2025-11-19 16:51:07

  • Particle size effects of tetrahedron-shaped Ag3PO4 photocatalyst on water-oxidation activity and carrier recombination dynamics

    摘要: We investigated photocatalytic water-oxidation performance of tetrahedron-shaped silver phosphate (Ag3PO4) crystals with various particle sizes. The performance was clearly influenced by the particle size. The maximum activity was found for the particle with a tetrahedron edge with 1.5 μm length, which showed the highest rate of oxygen evolution. A series of analysis against time-resolved diffuse reflection spectra of the powder samples reveals that not only carrier recombination dynamic but also photoexcited carrier density can play important roles in the water oxidation. Our finding should contribute to give one of the basic ideas when designing semiconductor photocatalysts for water splitting.

    关键词: Silver phosphate,Photocatalytic water oxidation,Global analysis,Carrier dynamics

    更新于2025-11-19 16:51:07

  • Water-sensitive ratiometric fluorescent probes and application to test strip for rapid and reversible detection of water

    摘要: Naphthalimide-decorated fluorinated acetamides 1 and 2 were developed as solvent-sensitive dual emissive fluorescence probes. Particularly, 1 exhibited dual emission with a large Stokes shift for water, DMF, and DMSO solvents over other various organic solvents. The dual emission might be due to the increase of intramolecular charge transfer (ICT) of the naphthalimide moiety through the association of the difluorinated acetamide group with the solvent molecules. The 1 can give rise to a ratiometric change in the dual emission and a visual fluorescent color change depending on the water contents in organic solvents, including ethanol, methanol, acetonitrile and DMF solvents. Moreover, the 1-impregnated paper strips showed a rapid and easy-to-visualize fluorescent color change enabling water detection in organic solvents. These simple-to-use paper strips were also found to be reusable over 20 times.

    关键词: Naphthalimide,Ratiometric fluorescence probe,Reusable test strip,Intramolecular charge transfer (ICT),Water detection

    更新于2025-11-19 16:46:39