修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles

    摘要: Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fueling much research geared towards discovery and control of new structures. LSPR properties also depend on composition; traditional, rare and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. Here, we report numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (10 1), (10 2), (10 3) and (11 1), that create tent, chair, taco and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges.

    关键词: nanoplasmonics,nanoparticle shape,magnesium nanoparticles,localized surface plasmon resonance,electron-energy loss spectroscopy,Wulff construction

    更新于2025-09-23 15:19:57

  • Wulff-Based Approach to Modeling the Plasmonic Response of Single Crystal, Twinned, and Core–Shell Nanoparticles

    摘要: The growing interest in plasmonic nanoparticles and their increasingly diverse applications is fuelled by the ability to tune properties via shape control, promoting intense experimental and theoretical research. Such shapes are dominated by geometries that can be described by the kinetic Wulff construction such as octahedra, thin triangular platelets, bipyramids, and decahedra, to name a few. Shape is critical in dictating the optical properties of these nanoparticles, in particular their localized surface plasmon resonance behavior, which can be modeled numerically. One challenge of the various available computational techniques is the representation of the nanoparticle shape. Specifically, in the discrete dipole approximation, a particle is represented by discretizing space via an array of uniformly distributed points-dipoles; this can be difficult to construct for complex shapes including those with multiple crystallographic facets, twins, and core?shell particles. Here, we describe a standalone user-friendly graphical user interface (GUI) that uses both kinetic and thermodynamic Wulff constructions to generate a dipole array for complex shapes, as well as the necessary input files for DDSCAT-based numerical approaches. Examples of the use of this GUI are described through three case studies spanning different shapes, compositions, and shell thicknesses. Key advances offered by this approach, in addition to simplicity, are the ability to create crystallographically correct structures and the addition of a conformal shell on complex shapes.

    关键词: localized surface plasmon resonance,Wulff construction,plasmonic nanoparticles,shape control,graphical user interface,DDSCAT,discrete dipole approximation

    更新于2025-09-16 10:30:52