- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing
摘要: We have developed a fast and simple method for fabricating microfluidic channels in silicon using direct laser writing. The laser microfabrication process was optimised to generate microfluidic channels with vertical walls suitable for acoustic particle focusing by bulk acoustic waves. The width of the acoustic resonance channel was designed to be 380 μm, branching into a trifurcation with 127 μm wide side outlet channels. The optimised settings used to make the microfluidic channels were 50% laser radiation power, 10 kHz pulse frequency and 35 passes. With these settings, six chips could be ablated in 5 h. The microfluidic channels were sealed with a glass wafer using adhesive bonding, diced into individual chips, and a piezoelectric transducer was glued to each chip. With acoustic actuation at 2.03 MHz a half wavelength resonance mode was generated in the microfluidic channel, and polystyrene microparticles (10 μm diameter) were focused along the centre‐line of the channel. The presented fabrication process is especially interesting for research purposes as it opens up for rapid prototyping of silicon‐glass microfluidic chips for acoustofluidic applications.
关键词: acoustophoresis,acoustofluidics,ultrasound,laser micromachining,particle manipulation,microfabrication
更新于2025-09-16 10:30:52
-
Holographic acoustic tweezers
摘要: Acoustic tweezers use sound radiation forces to manipulate matter without contact. They provide unique characteristics compared with the more established optical tweezers, such as higher trapping forces per unit input power and the ability to manipulate objects from the micrometer to the centimeter scale. They also enable the trapping of a wide range of sample materials in various media. A dramatic advancement in optical tweezers was the development of holographic optical tweezers (HOT) which enabled the independent manipulation of multiple particles leading to applications such as the assembly of 3D microstructures and the probing of soft matter. Now, 20 years after the development of HOT, we present the realization of holographic acoustic tweezers (HAT). We experimentally demonstrate a 40-kHz airborne HAT system implemented using two 256-emitter phased arrays and manipulate individually up to 25 millimetric particles simultaneously. We show that the maximum trapping forces are achieved once the emitting array satisfies Nyquist sampling and an emission phase discretization below π/8 radians. When considered on the scale of a wavelength, HAT provides similar manipulation capabilities as HOT while retaining its unique characteristics. The examples shown here suggest the future use of HAT for novel forms of displays in which the objects are made of physical levitating voxels, assembly processes in the micrometer and millimetric scale, as well as positioning and orientation of multiple objects which could lead to biomedical applications.
关键词: acoustic levitation,acoustophoresis,acoustic tweezers,contactless manipulation,displays
更新于2025-09-04 15:30:14