- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Individual Tree Crown Segmentation of a Larch Plantation Using Airborne Laser Scanning Data Based on Region Growing and Canopy Morphology Features
摘要: The detection of individual trees in a larch plantation could improve the management efficiency and production prediction. This study introduced a two-stage individual tree crown (ITC) segmentation method for airborne light detection and ranging (LiDAR) point clouds, focusing on larch plantation forests with different stem densities. The two-stage segmentation method consists of the region growing and morphology segmentation, which combines advantages of the region growing characteristics and the detailed morphology structures of tree crowns. The framework comprises five steps: (1) determination of the initial dominant segments using a region growing algorithm, (2) identification of segments to be redefined based on the 2D hull convex area of each segment, (3) establishment and selection of profiles based on the tree structures, (4) determination of the number of trees using the correlation coefficient of residuals between Gaussian fitting and the tree canopy shape described in each profile, and (5) k-means segmentation to obtain the point cloud of a single tree. The accuracy was evaluated in terms of correct matching, recall, precision, and F-score in eight plots with different stem densities. Results showed that the proposed method significantly increased ITC detections compared with that of using only the region growing algorithm, where the correct matching rate increased from 73.5% to 86.1%, and the recall value increased from 0.78 to 0.89.
关键词: airborne laser scanning (ALS),individual tree crown (ITC) segmentation,light detection and ranging (LiDAR),region growing,canopy morphology,larch plantation
更新于2025-09-19 17:13:59
-
Estimating Stand Age from Airborne Laser Scanning Data to Improve Models of Black Spruce Wood Density in the Boreal Forest of Ontario
摘要: Spatial models that provide estimates of wood quality enable value chain optimization approaches that consider the market potential of trees prior to harvest. Ecological land classification units (e.g., ecosite) and structural metrics derived from Airborne Laser Scanning (ALS) data have been shown to be useful predictors of wood quality attributes in black spruce stands of the boreal forest of Ontario, Canada. However, age drives much of the variation in wood quality among trees, and has not been included as a predictor in previous models because it is poorly represented in inventory systems. The objectives of this study were (i) to develop a predictive model of mean stem age of black spruce-dominated stands, and (ii) refine models of black spruce wood density by including age as a predictor variable. A non-parametric model of stand age that used a k nearest neighbor (kNN) classification based on a random forests (rf) distance metric performed well, producing a root mean square difference (RMSD) of 15 years and explaining 62% of the variance. The subsequent random forests model of black spruce wood density generated from age and ecosite predictors was useful, with a root mean square error (RMSE) of 59.1 kg·m?3. These models bring large-scale wood quality prediction closer to becoming operational by including age and site effects that can be derived from inventory data.
关键词: predictive modeling,forest stand age,LiDAR,boreal forest,wood density modeling,black spruce,forest resource inventory,Airborne Laser Scanning (ALS),k-Nearest Neighbor
更新于2025-09-11 14:15:04
-
Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery
摘要: Advanced forest resource inventory (FRI) information is of critical importance for sustainable forest management. FRIs are dependent on remote sensing data and processing methods, along with field calibration/validation to generate cost-effective options for modelling forest inventory and biophysical variables over large areas. The objective of this study was to examine the impact of combining multi-seasonal multispectral satellite imagery with airborne laser scanning (ALS) data for estimating basal area, species mixture and stem density for an uneven-aged tolerant hardwood forest in Ontario, Canada. Using random forest (RF) regression as a non-parametric diagnostic technique, three multispectral optical sensors (i.e., Landsat-5 TM, Sentinel-2 A and WorldView-2) were compared to examine the most cost-effective sensor configuration for modelling FRI variables. The contribution of spectral predictors derived from these optical sensors as well as ALS height and intensity metrics were evaluated using RF variable importance. As part of our variable selection framework, all predictor variables were grouped into relatively independent clusters using a hierarchical variable clustering technique, which revealed the distinctiveness between information contained in spectral predictors, height- and intensity-based metrics. This indicates that ALS intensity data carry unique information complementary to passive near-infrared data for forest characterization. ALS data alone did not result in accurate models for basal area and species mixture, but predictive accuracies were improved significantly with the addition of spectral predictors. Compared to single-date images, multi-seasonal imagery proved to be more accurate for modelling FRI variables, especially when combined with ALS data. Despite its limited spatial resolution, Sentinel-2 A was found to be the most cost-effective image source for enhancing ALS-based FRI models. Using variables identified by the variable selection procedure, best subsets regression outperformed the RF models developed for diagnostic analysis, resulting in a suite of accurate and parsimonious predictive models, with coefficients of determination of 0.73, 0.90 and 0.67, for basal area, species mixture, and stem density, respectively.
关键词: Multi-seasonal satellite imagery,Variable selection,Sentinel-2A,Airborne laser scanning (ALS),Forest resource inventory
更新于2025-09-10 09:29:36