- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
centers in amorphous
摘要: We investigate the charge-trapping behavior in nitrogen-deficient amorphous silicon nitride (a-Si3N4?x) using first-principles calculations. The amorphous ensembles with one nitrogen atom missing are generated through melt-quench procedures. The nitrogen deficiency mainly produces one Si—Si bond and one K center (Si dangling bond). The energy level of defect states indicates that the K centers act as possible trap sites. The transition levels of K centers are estimated, and it is found that the Hubbard U energy ranges from ?1.14 to 1.11 eV. Even though most K centers show positive U, the charge states of most centers in the ensemble are either positive or negative under the charge-neutrality condition, resulting in 'seemingly negative-U' behavior. This is consistent with the diamagnetic signal in experiments. The charge-injection energy of K centers is evaluated on the basis of the Franck-Condon approximation, and the average trap depths for electrons (1.33 eV below the conduction edge) and holes (1.54 eV above the valence edge) are in good agreement with experimental data.
关键词: K centers,Franck-Condon approximation,first-principles calculations,Hubbard U energy,amorphous silicon nitride,charge-trapping behavior
更新于2025-09-04 15:30:14