- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Plasmonic Colloidosomes Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level
摘要: Antimicrobial resistance (AMR) is a long-term public health challenge worldwide, and it is increasingly recognized to be a heteroresistance phenomenon in an isogenic bacterial population. When the minority population of resistant bacteria with strong AMR is not handled in time, such sub-population can be enriched leading to the further development of bacterial AMR. However, conventional AMR studies based on ensemble-averaged data from large population fail to characterize the bacterial heterogeneity. In this work, we develop a method using plasmonic colloidosomes and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to study single bacterial cell AMR. The plasmonic colloidosomes act simultaneously as bacteria containers and sample spots for MALDI-TOF MS detection. Cells of β-lactamases producing Escherichia coli (E. coli) are trapped in colloidosome containers (~200 μm in diameter) in the presence of antibiotic drug ampicillin (AMP). Benefiting from the fast reaction kinetics in microcompartments, hydrolysis product of AMP by bacteria can be detected by MALDI-TOF MS within 40 min. The colloidosomes as MALDI sample spots also benefit sensitive detection and accurate quantification of AMP and its hydrolysis product. It was found that even an isogenic population could consist of a mixture of bacteria that have different resistance degrees to antibiotics. Taken the β-lactamases producing E. coli as an example, 20% of the bacterial individuals have relatively strong activity in hydrolyzing AMP. It is expected that the colloidosome-based platform would reveal a prospective application in full characterization of single bacterial cell AMR.
关键词: MALDI-TOF MS,Antimicrobial resistance,Single-cell level,Plasmonic colloidosomes,Bacterial heteroresistance
更新于2025-09-23 15:21:01
-
Plasmonic Colloidosome-Based Multifunctional Platform for Bacterial Identification and Antimicrobial Resistance Detection
摘要: Antimicrobial resistance (AMR) is an urgent threat to public health. Rapid bacterial identification and AMR tests are important to promote personalized treatment of patients and to limit the spread of AMR. Herein, we explore the utility of plasmonic colloidosomes in bacterial analysis based on mass spectrometry (MS) and Raman scattering. It is found that colloidosomes can provide a rigid micron-size platform for bacterial culture and analysis. Coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, this platform enables bacterial identification at the species level with cell counts as low as 50, > 100 times more sensitive than the standard method of MALDI-TOF MS based bacterial identification. Coupled with Raman scattering, it can distinguish single bacterial cells at the strain level and recognize AMR at the single-cell level. These reveal the broad potential of the platform for flexible and versatile bacterial detection and typing.
关键词: Plasmonic colloidosomes,MALDI-TOF MS,Raman scattering,antimicrobial resistance detection,bacterial identification
更新于2025-09-11 14:15:04
-
Fluorescent peptides for imaging of fungal cells
摘要: Fungal infections, especially with the advent of antimicrobial resistance, represent a major burden to our society. As a result, there has been an increasing interest in the development of new probes that accelerate the study of fungi-related biological processes and facilitate novel clinical diagnostic and treatment strategies. Fluorescence-based reporters can provide dynamic information at the molecular level with high spatial resolution. However, conventional fluorescent probes for microbes often suffer from low specificity. In the last decade, numerous studies have been reported on the chemical design and application of fluorescent peptides for both in vitro and in vivo imaging of fungal cells. In this article, we review different strategies used in the preparation of fluorescent peptides for pathogenic fungi as well as some of their applications in medical imaging and in mode-of-action mechanistic studies.
关键词: imaging,fungal cells,antimicrobial resistance,Fluorescent peptides,medical diagnostics
更新于2025-09-10 09:29:36
-
Toward Point-of-Care Drug Quality Assurance in Developing Countries: Comparison of Liquid Chromatography and Infrared Spectroscopy Quantitation of a Small-Scale Random Sample of Amoxicillin
摘要: Substandard antibiotics are thought to be a major threat to public health in developing countries and a cause of antimicrobial resistance. However, assessing quality outside of a laboratory setting, using simple equipment, is challenging. The aim of this study was to validate the use of a portable Fourier transform infrared (FT-IR) spectrometer for the identification of substandard antibiotics. Results are presented for amoxicillin packages from Haiti, Ghana, Sierra Leone, Democratic Republic of Congo, India, Papua New Guinea, and Ethiopia collected over the course of 6 months in 2017, including two field trips with the FT-IR to Ghana and Sierra Leone. Canadian samples were used as a control. Regarding drug quality, of 290 individual capsules of amoxicillin analyzed, 13 were found to be substandard with total active pharmaceutical ingredients (API) lying outside the acceptable range of 90–110%. Of these 13, four were below 80% API. The FT-IR reliably identified these outliers and was found to yield results in good agreement with the established pharmacopeia liquid chromatography protocol. We conclude that the portable FT-IR may be suitable to intercept substandard antibiotics in developing countries where more sophisticated techniques are not readily available.
关键词: developing countries,amoxicillin,portable FT-IR spectrometer,antimicrobial resistance,substandard antibiotics
更新于2025-09-09 09:28:46