- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
3D graphene aerogels/Sb2WO6 hybrid with enhanced photocatalytic activity under UV- and visible-light irradiation
摘要: A novel ultraviolet (UV)- and visible-light-active 3D graphene aerogels (3DGA)/Sb2WO6 hybrid photocatalyst was prepared by electrostatic self-assembly (ESSA) method. The photocatalytic activity of the 3DGA/Sb2WO6 hybrid was studied by monitoring the change in the concentration of methyl orange (MO) under UV-light and visible-light irradiation. The results demonstrated that the as-prepared hybrid exhibited significantly enhanced efficiency for the photodegradation of MO in comparison with pure Sb2WO6. This was ascribed to the efficient separation of the photogenerated electrons (e–) and holes (h+) with the aid of 3DGA as well as the generated reactive superoxide radical anions (O2(cid:129)–). Moreover, the 3DGA/Sb2WO6 hybrid exhibited high recyclability, because the highly hydrophobic 3DGA in the hybrid was very advantageous to the separation of the hybrid photocatalyst from the MO solutions.
关键词: 3D graphene aerogels,Sb2WO6,Electrostatic self-assembly,Hybrid photocatalyst,Visible-light irradiation
更新于2025-09-23 15:21:21
-
Semiconducting Langmuir-Blodgett Films of Porphyrin Paddle-Wheel Frameworks for Photoelectric Conversion
摘要: Understanding the photocurrent transportation within porphyrin-containing metal-organic frameworks (PMOFs) will be a critical step for applying these materials in light-harvesting molecular devices in the future. Two copper porphyrin paddle-wheel frameworks (Cu-PPFs) were employed to study the influence of metal ions coordinated into the porphyrin ligands on conductivity and photoelectron transfer capability. To compare the electronic and optical properties of both materials, we prepared an ultra-thin film of each PPF via a Langmuir-Blodgett method. The resulting films exhibited uniform morphology and single-crystalline domains, in addition to photoelectric conversion capabilities. We confirmed both Cu-PPFs have semiconducting properties with an optical bandgap around 2.7 eV. The current density generated by both Cu-PPFs were studied through a mercury drop junction approach. We observed a slightly higher conductivity from the Cu-PPF film consisting of metalloporphyrins than the one without copper doping in the porphyrin centers. In addition, the copper ions coordinated porphyrins were found to be more favorable for facilitating photo-induced electron transfer from the Cu-PPF film to a conductive glass substrate. This work presents a new approach of combining thin film fabrication and electro-heterojunction measurement to study electron transfer within an ultra-thin film.
关键词: Metal-Organic Framework (MOF),2D Material,Langmuir-Blodgett Film,Self-Assembly,Semiconductor,Porphyrin Thin Film,Photoelectric Conversion
更新于2025-09-23 15:21:21
-
p-Doping Poly(3-hexylthiophene) in Solvent Mixtures
摘要: One method to improve the conductivity of conjugated polymers, like poly(3-hexylthiophene) (P3HT), is to “chemically dope” them analogous to inorganic materials. One electron acceptor that has been used in tandem to p-doped P3HT is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), and recently there has been much interest in the nature of the interactions between F4TCNQ and P3HT in the solution phase. To date, however, there are few reports that investigate the behavior of F4TCNQ-doped P3HT in binary solvent mixtures. The study reported herein is an investigation of F4TCNQ-doped P3HT in mixtures of chloroform (CF) with dichloromethane (DCM) or acetonitrile (AcN), wherein variations in the doping efficiency in these mixtures are observed using UV–vis absorption, Raman, and electron paramagnetic resonance spectroscopic techniques. The contrasting solubility and charge transfer behavior of F4TCNQ-doped P3HT in CF:DCM and CF:AcN show that judicious selection of solvent mixtures may be exploited to improve the doping efficiency and solution processability of p-doped P3HT dispersions.
关键词: dispersions,charge transfer,conjugated polymers,self-assembly
更新于2025-09-23 15:21:21
-
Progress in Dielectrophoretic Assembly of Carbon Nanotubes for Sensing Application
摘要: Carbon nanotubes (CNTs) have shown their potential for broad applications in field effect transistor, field emission, interconnects, energy storage, biomedicine, and many others, due to their excellent electrical, thermal, and mechanical properties. One requirement for many of these applications is to assemble CNTs into designated devices. As a promising nanomanipulation method, dielectrophoresis (DEP) has been widely applied to assemble CNTs in the fabrication of CNT-based nanodevices. This paper presents a brief review of the progress in CNT-based nanosensors and the application of DEP in device making. These sensors focus on the sensing of gases, temperature, bioparticles, light, pressure, stress, and strain.
关键词: sensor,assembly,dielectrophoresis,carbon nanotube,application
更新于2025-09-23 15:21:21
-
Building from Ga-porphyrins: Synthesis of Ga-Acetylide complexes using acetylenes and polyynes
摘要: Multidimensional, conjugated building blocks have been formed through the axial coordination of polyynes to the central Ga atom of tetraarylporphyrins. Electron deficient pentafluorophenyl substituents in the meso-positions provide more stable s-acetylide complexes to Ga than analogous structures with tert-butylphenyl groups. Mono-, di-, and triynes have been used, including a pyridyl endcapped diyne that allows for formation of porphyrin triads through coordination of the pyridyl ligand to a Ru porphyrin.
关键词: hierarchical assembly,Ga-porphyrin,polyyne,supramolecular assembly,axial s-acetylide
更新于2025-09-23 15:21:01
-
Self-assembled indium nanostructures formation on InSe (0001) surface
摘要: The surfaces of 2D layered crystals are one among most perspective templates for self-assembling of metal nanostructures due to the dewetting. The initial InSe (0001) surface as topological template was characterized by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low electron energy diffraction. InSe (0001) surface used in the process of formation of nanostructures found to be a template covered with array of triangular-shaped cites. The results of STM/STS studies on the formation of indium nanostructures on (0001) surface of InSe layered semiconductor crystal are presented. Indium was thermally deposited on structurally perfect InSe crystal cleavages obtained in situ. Geometrically heterogeneous (in height) initial (0001) InSe surface is used to activate the dewetting phenomenon in a manner that leads to the formation of 0D triangular-shaped nucleus of deposited indium nanostructures. STS acquired spatially averaged I–V curves changes their dependence from semiconductor one to almost metallic due to dewetting process. Moreover, the spatial arrangement of formed indium nanostructures is powered by hexagonal lattice symmetry of InSe surface on macroscale.
关键词: Hetero nanostructures,Nanostructures template-directed assembly,Layered crystals,Scanning tunneling microscopy/spectroscopy,Indium selenide,Low energy electron diffraction
更新于2025-09-23 15:21:01
-
A Novel Nanorod Self-Assembled WO <sub/>3</sub> ?· H <sub/>2</sub> O Spherical Structure: Preparation and Flexible Gas Sensor
摘要: In this work, a novel WO3·H2O spherical structure which was self-assembled by nanorods was achieved by using hydrothermal method. A comprehensive growth mechanism was proposed to explain the formation of three different type nanostructures. Flexible gas sensors were successfully fabricated based on such unique nanostructures. We found that these nanorods and nanoparticle’s self-assembled spherical structure showed excellent gas response to ammonia. This result may provide great benefit potential to further study for the preparation and gas performance of such self-assembled structure of WO3·H2O.
关键词: WO3·H2O,Nanostructures,Self-Assembly,Hydrothermal Process,Gas-Sensing
更新于2025-09-23 15:21:01
-
Photophysical Properties of Fluorescent Self-Assembled Peptide Nanostructures for Singlet Oxygen Generation
摘要: In this work, a drug delivery system for perillyl alcohol based on the peptide self-assembly containing 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (C6) as a fluorescent additive is obtained, and its photophysical characteristics as well as its release dynamics were studied by steady-state and time-resolved fluorescence spectroscopy. Results proved the dynamics of drug release from the peptide nanostructures and showed that the system formed by the self-assembled peptide and C6, along with perillyl alcohol, presents unique photophysical properties that can be exploited to generate singlet oxygen (1O2) upon irradiation, which is not achieved by the sole components. Through epifluorescence microscopy combined with time-correlated single photon counting fluorescence spectroscopy, the release mechanism was proven to occur upon peptide structure interconversion, which is controlled by environmental changes.
关键词: photophysical properties,perillyl alcohol,drug delivery system,time-resolved fluorescence spectroscopy,fluorescent additive,peptide self-assembly,epifluorescence microscopy,singlet oxygen generation
更新于2025-09-23 15:21:01
-
Transparent, flexible MAPbI3 perovskite microwire array passivated with ultra-hydrophobic supramolecular assembly for stable and high-performance photodetectors
摘要: The emergence of organic-inorganic hybrid perovskites (OHPs) has revolutionised the potential performance of optoelectronic devices, most perovskites are opaque and hence incompatible with transparent optoelectronics, and sensitive to environmental degradation. Here, a single-step fabrication of ultra-long MAPbI3 perovskite microwire array over a large-area using stencil lithography based on a sequential vacuum sublimation. The environmental stability of MAPbI3 is empowered a newly designed and synthesized transparent supramolecular self-assembly, based on a mixture of two tripodal L-Phe-C11H23/C7F15 molecules, which showed a contact angle of 105° and served as ultra-hydrophobic passivation layer for more than 45 days in ambient atmosphere. The MAPbI3 microwire array passivated with supramolecular self-assembly demonstrate for the first time both excellent transparency of ~89% at 550 nm and remarkable photoresponse with photo-switching ratio of ~104, responsivity of 789 A/W, detectivity of 1014 Jones, linear dynamic range of ~ 122 dB, and rise time of 432 μs. Furthermore, the photodetector fabricated on flexible PET substrate demonstrated robust mechanical flexibility even beyond 1200 bending cycles. Therefore, the scalable stencil lithography and supramolecular passivation approaches have the potential to deliver next-generation transparent, flexible, and stable optoelectronics.
关键词: transparency,stencil lithography,photodetectors,MAPbI3,supramolecular self-assembly,flexibility,organic-inorganic hybrid perovskites,environmental stability
更新于2025-09-23 15:21:01
-
Gap Plasmon of Virus-Templated Biohybrid Nanostructures Uplifting the Performance of Organic Optoelectronic Devices
摘要: Plasmonic nanostructures, which exhibit prominent localized surface plasmon resonance (LSPR) properties, are highly desirable for organic solar cells (OSC) and organic light-emitting diode (OLED) devices. In the present work, novel plasmonic bio-nanostructures are successfully synthesized via the self-densification of silver (Ag) and gold (Au) metallic nanoparticles (NPs) onto a genetically engineered M13 bacteriophage template. Owing to the unique charge selectivity of the peptide receptors on the M13 bacteriophage, the metallic NPs can be directly anchored onto the bacteriophage through charge-driven interactions without binder/surfactant. The resulting Ag/AuNP-M13 bio-nanostructures display extraordinary gap-plasmon effect as well as tremendously enhanced LSPR properties than the randomly dispersed Ag/Au NPs. The incorporation of Ag/AuNP-M13 bio-nanostructures tremendously improves the performance of both OSC and OLED devices. Specifically, a power conversion efficiency increment of 15.5% is recorded for the phage-modified OSCs; whereas an external quantum efficiency increment of 22.6% is achieved for the phage-modified OLEDs. Based on this environmentally benign virus-template approach, various plasmonic/photonic bio-nanostructures can be designed for diverse device applications.
关键词: field-enhancement,optoelectronics,M13 bacteriophage,metamaterials,self-assembly,gap-plasmon effect
更新于2025-09-23 15:21:01