- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Asymmetric Siloxane-Functional Side Chains Enable High-Performance Donor Copolymers for Photovoltaic Applications
摘要: In this work, three benzodithiophene (BDT)-benzotriazole (BTA) alternated wide bandgap (WBG) copolymers attaching symmetric or asymmetric conjugated side chains, namely PDBTFBTA-2T, PBDTFTBA-TSi and PBDTFBTA-2Si, were developed for efficient nonfullerene polymer solar cells. The symmetry effect of the side chains was investigated in detail on the overall properties of these donor polymers. The results demonstrated that the introduced siloxane functional groups showed less effect on the absorptions and frontier orbital levels of the prepared polymers but had significant effect on the miscibility between these polymer donors and nonfullerene acceptor. If increasing the content of siloxane functional groups, the miscibility of the polymer donors and Y6 would be improved, leading to the decreased domain size and more mixed domains. Interestingly, the active blend based on PBDTFTBA-TSi with asymmetric side chains exhibited more balanced miscibility, carrier mobility and phase separation, benefiting exciton diffusion and dissociation. Therefore, a champion power conversion efficiency (PCE) of 14.18% was achieved finally in PBDTFTBA-TSi devices, which was 20.6% and 19.0% higher than the symmetric counterparts of PBTFBTA-2T devices (PCE = 11.76%) and PBDTFBTA-2Si devices (PCE = 11.92%), respectively. This work highlights that the asymmetric side chain engineering based on siloxane functional groups is a promising design strategy for high-performance polymer donor semiconductors.
关键词: molecular design strategy,nonfullerene polymer solar cells,siloxane functional group,wide bandgap copolymers,asymmetric side chains
更新于2025-09-19 17:13:59