修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Enhancing light absorption by colloidal metal chalcogenide quantum dots <i>via</i> chalcogenol(ate) surface ligands

    摘要: Chemical species at the surface (ligands) of colloidal inorganic semiconductor nanocrystals (QDs) markedly impact the optoelectronic properties of the resulting systems. Here, post-synthesis surface chemistry modification of colloidal metal chalcogenide QDs is demonstrated to induce both broadband absorption enhancement and band gap reduction. A comprehensive library of chalcogenol(ate) ligands is exploited to infer the role of surface chemistry on the QD optical absorption: the ligand chalcogenol(ate) binding group mainly determines the narrowing of the optical band gap, which is attributed to the np occupied orbital contribution to the valence band edge, and mediates the absorption enhancement, which is related to the π-conjugation of the ligand pendant moiety, with further contribution from electron donor substituents. These findings point to a description of colloidal QDs that may conceive ligands as part of the overall QD electronic structure, beyond models derived from analogies with core/shell heterostructures, which consider ligands as mere perturbation to the core properties. The enhanced light absorption achieved via surface chemistry modification may be exploited for QD-based applications in which an efficient light-harvesting initiates charge carrier separation or redox processes.

    关键词: colloidal metal chalcogenide quantum dots,light absorption,optoelectronic properties,surface ligands,band gap reduction

    更新于2025-10-22 19:40:53

  • Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells

    摘要: All-inorganic metal halide perovskites are showing promising development towards efficient long-term stable materials and solar cells. Element doping, especially on the lead site, has been proved to be a useful strategy to obtain the desired film quality and material phase for high efficient and stable inorganic perovskite solar cells. Here we demonstrate a function by adding barium in CsPbI2Br. We find that barium is not incorporated into the perovskite lattice but induces phase segregation, resulting in a change in the iodide/bromide ratio compared with the precursor stoichiometry and consequently a reduction in the band gap energy of the perovskite phase. The device with 20 mol% barium shows a high power conversion efficiency of 14.0% and a great suppression of non-radiative recombination within the inorganic perovskite, yielding a high open-circuit voltage of 1.33 V and an external quantum efficiency of electroluminescence of 10?4.

    关键词: inorganic perovskite solar cells,barium doping,non-radiative recombination,band gap reduction,phase segregation

    更新于2025-09-19 17:13:59