修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Adaptive Decentralized Control of Residential Storage in PV-Rich MV-LV Networks

    摘要: The rapid adoption of residential-scale photovoltaic (PV) systems in low voltage (LV) networks combined with the falling prices of residential-scale battery energy storage (BES) systems is paving the way for a future in which customers could locally supply most of their energy needs. However, off-the-shelf (OTS) storage systems operate for the sole benefit of the customer (reducing grid imports). This means that charging might not occur during times of high PV generation, resulting in technical issues on LV and medium voltage (MV) networks. This work proposes an adaptive decentralized control strategy for residential-scale BES systems to reduce voltage and thermal issues whilst still benefiting customers. With this strategy, the power charging and discharging rates constantly adapt throughout the day based on clear-sky irradiance, PV generation, demand, and state of charge; significantly reducing reverse power flows and ensuring adequate storage capacity the next morning. A real Australian MV feeder with realistically modelled LV networks is studied using smart meter data. Results demonstrate that the proposed control strategy overcomes the limitations of the OTS BES. It is also shown it can be as effective as an ideal optimization-based approach, being able to manage all technical issues without significantly affecting customers.

    关键词: PV Systems,Self-Sufficiency,Distribution Networks,Battery Energy Storage Systems

    更新于2025-09-23 15:23:52

  • [IEEE 2018 53rd International Universities Power Engineering Conference (UPEC) - Glasgow, United Kingdom (2018.9.4-2018.9.7)] 2018 53rd International Universities Power Engineering Conference (UPEC) - Optimal Siting of BESS in Distribution Networks under High PV Penetration

    摘要: This paper focuses on the optimal siting of Battery Energy Storage Systems (BESS) in a Distribution Network with installed Photovoltaic Generation, in order to minimize the energy losses of the system. The bus voltage limit, as well as the ampacity level of the lines are taken into consideration as constraints, while the technical constraints of the BESSs have also been taken into account. Unified Particle Swarm Optimization is used as the solving optimization technique. Simulations are being carried out on IEEE-33 bus system regarding different scenarios and the results are presented and compared. A significant improvement in energy losses, voltage and line ampacity profile is achieved by the introduction of BESS units in a Distribution Network with high PV Penetration.

    关键词: BESS,Particle Swarm Optimization,Distributed Generation,Battery Energy Storage Systems,PV,optimal sizing siting of ESS,PSO

    更新于2025-09-23 15:22:29

  • Decentralized Optimal Control of a Microgrid with Solar PV, BESS and Thermostatically Controlled Loads

    摘要: Constructing microgrids with renewable energy systems could be one feasible solution to increase the penetration of renewable energy. With proper control of the battery energy storage system (BESS) and thermostatically controlled loads (TCLs) in such microgrids, the variable and intermittent energy can be smoothed and utilized without the interference of the main power grid. In this paper, a decentralized control strategy for a microgrid consisting of a distributed generator (DG), a battery energy storage system, a solar photovoltaic (PV) system and thermostatically controlled loads is proposed. The control objective is to maintain the desired temperature in local buildings at a minimum cost. Decentralized control algorithm involving variable structure controller and dynamic programming is used to determine suitable control inputs of the distributed generator and the battery energy storage system. The model predictive control approach is utilized for long-term operation with predicted data on solar power and outdoor temperature updated at each control step.

    关键词: control of renewable power systems,thermostatically controlled loads,variable structure control,battery energy storage systems,decentralized control,model predictive control,solar PV,optimal control,control of microgrids

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Sixteenth International Conference on Wireless and Optical Communication Networks (WOCN) - Bhopal, India (2019.12.19-2019.12.21)] 2019 Sixteenth International Conference on Wireless and Optical Communication Networks (WOCN) - Condition Monitoring of Interconnecting Transformer Through ANN Approach

    摘要: The integration of distributed energy generation systems has begun to impact the operation of distribution feeders within the balancing areas of numerous electrical utilities. Battery energy storage systems may be used to facilitate greater integration of renewable energy generation. This paper describes a method for determining the power and energy capacities a battery energy storage system would need in order to accommodate a particular photovoltaic penetration level within a distribution feeder, or conversely, the amount of photovoltaic that could be installed on a feeder with a minimal investment in power and energy battery energy storage system (BESS) capacities. This method determines the BESS capacities required to compensate both intra-hour and inter-hour load and photovoltaic ?uctuations to achieve a ?at feeder power pro?le. By managing the feeder power, the voltage drop along the length of feeder may be managed, thereby mitigating the voltage ?uctuation induced by the stochastic nature of both renewables generation and load. Doing so facilitates system bene?ts, such as conservation voltage reduction, fewer operations of load tap changers, and voltage regulators, and allows for deferment of capital expenditures.

    关键词: shaping,photovoltaic (PV) integration,firming,Battery energy storage systems

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE Milan PowerTech - Milan, Italy (2019.6.23-2019.6.27)] 2019 IEEE Milan PowerTech - Optimal Scheduling of Generators and BESS using Forecasting in Power System with Extremely Large Photovoltaic Generation

    摘要: Large scale integration of renewable energy sources (RES) can cause supply demand uncertainty. In Japanese power systems the photovoltaic (PV) generation is growing rapidly. PV forecasting with energy storage systems can be used in Unit Commitment (UC) to reduce these imbalances. In this study Battery Energy Storage systems (BESS) and day-ahead PV forecasting with prediction intervals have been used to examine the imbalances. The day-ahead UC of thermal generators and day-ahead optimal BESS charging and discharging is calculated with different BESS inverter capacities and BESS energy capacities. Then the power shortfall and surplus of PV power in the target day are calculated. The simulation is run for 3 months from April to June 2010 for Kanto area power system of Japan.

    关键词: Photovoltaic (PV) forecasting,Unit Commitment (UC),Optimal Power dispatch,Battery Energy Storage Systems (BESS),Prediction Intervals,Mixed Integer Linear Programming (MILP)

    更新于2025-09-11 14:15:04

  • [IEEE 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) - Palermo (2018.6.12-2018.6.15)] 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) - Economic Viability of Residential PV Systems with Battery Energy Storage Under Different Incentive Schemes

    摘要: The high penetration of distributed renewable energy sources (DRESs), and especially photovoltaics (PVs), in LV distribution grids questions their safe and reliable operation. In this context, battery energy storage (BES) systems can be an effective solution to reduce the intermittency of electricity generated by DRESs and to enhance the resilience of power systems. However, it is unclear how different incentive schemes and regulatory frameworks affect the BES profitability for prosumers, compared with no incentives at all. In this paper, a techno-economic model is developed to investigate the economic viability of BES for residential PVs, operated under different incentive schemes. The input parameters of the model include typical load and generation profiles, electricity prices as well as typical PV and BES costs. Using these data, an optimization procedure based on an exhaustive search is performed and the optimal size of the integrated PV-BES system is derived.

    关键词: Battery energy storage systems,techno-economic modeling,photovoltaics,net-metering,solar power

    更新于2025-09-04 15:30:14