修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • [IEEE 2018 15th International Conference on the European Energy Market (EEM) - Lodz (2018.6.27-2018.6.29)] 2018 15th International Conference on the European Energy Market (EEM) - Optimized Operational Management of an EV Sharing Community Integrated with Battery Energy Storage and PV Generation

    摘要: Sharing schemes are emerging in residential and business sectors to reduce the purchase and operation cost of individuals. This paper proposes a framework to support the operational management of a shared EV fleet. An optimization algorithm is developed to coordinate the charging and reservation assignment using mixed integer programming. The integration with local PV production and battery storage is taken into account. A booking algorithm is also developed to determine whether a reservation can be accepted or not. Monte Carlo simulation is performed in the case study to demonstrate an application of the proposed framework with the Swedish travel patterns. The result provides an overview about the utilization rate of the fleet with different number of EVs, which can support the investment decision of an EV sharing community. The result also shows that the EVs and battery are effectively coordinated to minimize the total cost, satisfy the reservations and comply with grid limits.

    关键词: PV generation,battery storage,optimization,Monte Carlo simulation,operational management,electric vehicle sharing,mixed integer programming

    更新于2025-09-23 15:23:52

  • Sizing and improved grid integration of residential PV systems with heat pumps and battery storage systems

    摘要: In the future, the remuneration of photovoltaic (PV) grid feed-in might significantly drop in Germany and questions arise if small-scale PV systems remain economically attractive. However, battery storage systems (BSSs) and sector coupling with heat pumps (HPs) provide promising opportunities to increase PV self-consumption and the value of local energy generation, but change the dynamics of PV grid integration. Thus, an optimization model is proposed to enable all involved stakeholders to analyze interdependencies between different flexibility options for PV systems, incentive and grid integration. A case study-based approach allows an efficient evaluation of future PV systems with BSSs and HPs, the impact of such decentralized power-heat-storage systems on grid integration as well as proper incentive setting for sector coupling. The analysis shows that such shifting technologies are required to avoid undersizing of PV systems. BSSs only provide a benefit for the adoption of inflexible HPs, which is not preferable from a grid integration point of view. Operational incentives, such as peak charges and PV feed-in limits, offer a chance to foster PV grid integration and use new flexibilities in a grid-supporting way. The adoption of market-oriented operation leads to small benefit for such systems, which heavily rely on PV self-consumption.

    关键词: Power system planning,Heat pumps,Battery storage systems,Photovoltaic systems,Grid integration

    更新于2025-09-23 15:22:29

  • A novel control strategy to mitigate slow and fast fluctuations of the voltage profile at common coupling Point of rooftop solar PV unit with an integrated hybrid energy storage system

    摘要: A high penetration of rooftop solar photo-voltaic (PV) units can cause both slow and fast voltage fluctuations when connected to the low voltage (LV) distribution feeder due to the random variations in the solar PV power output versus load demand. These unacceptable fluctuations can be alleviated by using energy storage systems integrated with the solar PV units. In this paper, a novel heuristic control strategy is proposed to alleviate both the slow and fast voltage fluctuations in the connected LV distribution feeder; using a hybrid energy storage system. In the proposed method; the integrated battery storage will be dynamically charged to mitigate the voltage rise during mid-day, and discharged during the evening peak hours, and the integrated super capacitor storage will be simultaneously charged or discharged to control the fast fluctuations in the PV inverter to be within a specified magnitude. An energy sharing method between the battery storage and the super capacitor storage is proposed to provide undisrupted control for the fast fluctuations during passing cloud. The proposed control strategies have been verified on a distribution feeder system and the results have been reported.

    关键词: Slow fluctuations,Rooftop solar PV,Battery storage,Voltage control,Fast fluctuations,Hybrid energy storage system,Super capacitor storage

    更新于2025-09-23 15:21:01

  • Optimal location identification for aggregated charging of electric vehicles in solar photovoltaic powered microgrids with reduced distribution losses

    摘要: The battery-powered electric vehicle finds an alternative for fossil fuel-based vehicles in the transportation sector. The charge-discharge power profiles of the battery storage systems (BSS) contribute toward distribution losses, which can be minimized by proper scheduling. Such scheduling gives better results if the charging stations are optimally placed in the solar photovoltaic (PV) powered microgrid. This paper proposes a methodology to identify the optimal location to charge the electric vehicle in the microgrid. The proposed methodology has been developed using particle swarm optimization (PSO)-based optimal power flow (OPF) with an integrated power management (IPM) algorithm. The novelty of the IPM algorithm is the coordinated charging-discharging of the multiple numbers of aBSS of the EVs to reduce the overall distribution losses of the microgrid. The proposed methodology is tested in a standard solar PV powered microgrid network, where the optimal locations to charge the electric vehicles are identified. The daily distribution loss of the network is computed for all possible charging locations of the electric vehicle in the microgrid, and it is found that the distribution loss is minimum for the identified optimal locations. Also, to evaluate the effectiveness of the proposed methodology, the distribution loss analysis is carried out for three test cases; i) un-optimized power flow, ii) PSO based-OPF, and iii) PSO-based OPF with IPM. The case study shows that the PSO-based OPF gives 84% reduction in daily distribution loss compared to the conventional un-optimized power flow test case. The daily distribution loss is further reduced by 8% by incorporating the IPM algorithm in the PSO-based OPF. The utility can thereby encourage the electric vehicle (EV) owners to park their EVs at the optimal locations to reduce the distribution losses.

    关键词: microgrid,particle swarm optimization,Battery storage systems,renewable generation,electric vehicle,optimal location

    更新于2025-09-23 15:21:01

  • Dual Battery Storage System: An Optimized Strategy for the Utilization of Renewable Photovoltaic Energy in the United Kingdom

    摘要: The increasing world human population has given rise to the current energy crisis and impending global warming. To meet the international environmental obligations, alternative technological advances have been made to harvest clean and renewable energy. The solar photovoltaics (PV) system is a relatively new concept of clean technology that can be employed as an autonomous power source for a range of off-grid applications. In this study, the dual battery storage system is coupled with a solar PV system and a low voltage grid, bene?tting from the feed-in tariff (FIT) policy. The main outcomes of this study are: (I) A novel dual battery storage system for the optimal use of the PV system/energy is proposed; (II) The problem is formulated in the form of a mathematical model, and a cost function is devised for effective cost calculation; (III) An optimal cost analysis is presented for the effective use of PV energy; (IV) real-time data of a solar PV taken from the owner and the demand pro?le collected from the user is applied to the proposed approach, with United Kingdom (UK) tariff incentives. This system works in a loop by charging one system from the solar PV for one day, and discharging the other system. This model gives certainty that power is exported to the grid when the solar PV generates an excess amount; batteries are utilized during the peak hours, and power is purchased when the demand is not met by the batteries, or when the demand is higher than the generation. This study examined the economic knowledge of solar PV and battery storage systems by considering the FIT incentives.

    关键词: solar PV,feed-in tariff,battery storage system,demand pro?le

    更新于2025-09-23 15:21:01

  • Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems

    摘要: With the increasing implementation of solar photovoltaic (PV) systems, comprehensive methods and tools are required to dynamically assess their economic and environmental costs and benefits under varied spatial and temporal contexts. This study integrated system dynamics modeling with life cycle assessment and life cycle cost assessment to evaluate the cumulative energy demand, carbon footprint, water footprint, and life cycle cost of residential grid-connected (GC) and standalone (SA) solar PV systems. The system dynamics model was specifically used for simulating the hourly solar energy generation, use, and storage during the use phase of the solar PVs. The modeling framework was then applied to a residential prototype house in Boston, MA to investigate various PV panel and battery sizing scenarios. When the SA design is under consideration, the maximum life cycle economic saving can be achieved with 20 panels with no battery in the prototype house, which increases the life cycle economic savings by 511.6% as compared to a baseline system sized based upon the engineering rule-of-thumb (40 panels and 40 batteries), yet decreases the demand met by 55.7%. However, the optimized environmental performance was achieved with significantly larger panel (up to 300 units) and battery (up to 320 units) sizes. These optimized configurations increase the life cycle environmental savings of the baseline system by up to 64.6%, but significantly decrease the life cycle economic saving by up to 6868.4%. There is a clear environmental and economic tradeoff when sizing the SA systems. When the GC system design is under consideration, both the economic and environmental benefits are the highest when no battery is installed, and the benefits increase with the increase of panel size. However, when policy constraints such as limitations/caps of grid sell are in place, tradeoffs would present as whether or not to install batteries for excess energy storage.

    关键词: Grid-connected and standalone PV systems,Life cycle costing,System dynamics modeling,Battery storage,Solar photovoltaic systems,Life cycle assessment

    更新于2025-09-23 15:21:01

  • Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability

    摘要: In rural areas or in isolated communities in developing countries it is increasingly common to install micro-renewable sources, such as photovoltaic (PV) systems, by residential consumers without access to the utility distribution network. The reliability of the supply provided by these stand-alone generators is a key issue when designing the PV system. The proper system sizing for a minimum level of reliability avoids unacceptable continuity of supply (undersized system) and unnecessary costs (oversized system). This paper presents a method for the accurate sizing of stand-alone photovoltaic (SAPV) residential generation systems for a pre-established reliability level. The proposed method is based on the application of a sequential random Monte Carlo simulation to the system model. Uncertainties of solar radiation, energy demand, and component failures are simultaneously considered. The results of the case study facilitate the sizing of the main energy elements (solar panels and battery) depending on the required level of reliability, taking into account the uncertainties that affect this type of facility. The analysis carried out demonstrates that deterministic designs of SAPV systems based on average demand and radiation values or the average number of consecutive cloudy days can lead to inadequate levels of continuity of supply.

    关键词: photovoltaic generation,battery storage,renewable energy,Monte Carlo Simulation,reliability evaluation

    更新于2025-09-19 17:13:59

  • Snapshot of Photovoltaicsa??February 2020

    摘要: Since the demonstration of the ?rst modern silicon solar cells at Bell Labs in 1954, it took 58 years until the cumulative installed photovoltaic electricity generation capacity had reached 100 GW by the end of 2012. Then, it took another ?ve years to reach an annual installation capacity of over 100 GW in 2017 and close to 120 GW in 2019. As a consequence, the total world-wide installed photovoltaic electricity generation capacity exceeded 635 GW at the end of 2019. Although it witnessed a 20% and 25% decrease in annual installations in 2018 and 2019, respectively, China was again the largest market with 30 GW of annual installations. The number of countries in the club with more than 1 GW annually has increased to 18 countries in 2019. The use of local battery storage systems in solar farms as well as decentralized photovoltaic electricity generation systems combined has again increased, due to the falling storage system costs.

    关键词: technological development,policy options,photovoltaic,market development,renewable energies,battery storage,energy challenge

    更新于2025-09-16 10:30:52

  • Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh

    摘要: In this progressing technological advancement world, hybrid systems for power generation is one of the most promising fields for any researcher. In this context, photovoltaic-biomass hybrid systems with off-grid applications have become extremely popular with both Governments and individual users in rural areas of any part of the world. This system has gained popularity because of low cost, sustainability and very effective outcome with the use of natural resources at the rural areas. In this paper a proposed hybrid system which contains photovoltaics (PV) and biomass along with an additional storage has been considered to find the different aspects from an end user point of view. It also discusses the feasibility of the proposed model for an off-grid power system located in the remote areas of Ashuganj, Bangladesh. In order to analyse the pollutant emissions and calculate the cost parameters of the proposed system, RETScreen simulation software was deployed. This research also carries out a brief financial analysis considering the annual income of the end user and the payback periods for the installed system. It endeavours to provide complete information about different parameters which also includes the environmental impacts involved in establishing the proposed system. The conventional system in the pilot area is a kerosene-based system, hence in this research, a comparison between the proposed and the conventional system has been analysed using simulated results. The simple payback of the project was estimated to be 6.9 years and this model will be able to reduce the CO2 emissions by approximately 3.81 tonnes per year. The results have significantly supported the proposed system to be more reliable, environmentally-friendly and less costly than the conventional kerosene-based system.

    关键词: feasibility analysis,cost analysis,CO2 emissions,photovoltaics (PV),battery storage,renewable energy,simple payback period,biomass,off-grid electrification

    更新于2025-09-16 10:30:52

  • [IEEE 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) - Waikoloa Village, HI (2018.6.10-2018.6.15)] 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) - Optimal Use of Distributed Resources to Control Energy Variances in Microgrids

    摘要: This paper presents the optimization of distributed energy resources in a community microgrid. An optimal power flow is used to determine the optimal allocation of resources using an evolutionary programming method, achieving the lowest cost of supplying the demand while accounting for physical and operational constraints. The energy variances were managed and controlled within the microgrid. Different scenarios of high integration of distributed resources were studied using the algorithm. The utility could be used to supply a constant energy block or for backup power. The algorithm was successfully used to allocate resources while achieving a high load factor value.

    关键词: Demand Response,Distributed Energy Resources,Optimal Power Flow,Microgrids,Photovoltaic Systems,Battery Storage Systems

    更新于2025-09-11 14:15:04