- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus Fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis
摘要: A rapid method to quantify the total phenolic content (TPC) and total carotenoid content (TCC) in blackberries using near infrared spectroscopy (NIRS) was carried out aiming to provide reductions in analysis time and cost for the food industry. A total of 106 samples were analysed using the Folin-Ciocalteu method for TPC and a method based on Ultraviolet-Visible Spectrometer for TCC. The average contents found for TPC and TCC were 24.27 mg·g?1 dw and 8.30 μg·g?1 dw, respectively. Modified partial least squares (MPLS) regression was used for obtaining the calibration models of these compounds. The RPD (ratio of the standard deviation of the reference data to the standard error of prediction (SEP)) values from external validation for both TPC and TCC were between 1.5 < RPDp < 2.5 and RER values (ratio of the range in the reference data to SEP) were 5.92 for TPC and 8.63 for TCC. These values showed that both equations were suitable for screening purposes. MPLS loading plots showed a high contribution of sugars, chlorophyll, lipids and cellulose in the modelling of prediction equations.
关键词: bioanalytical applications,chemometrics,blackberries,near infrared,phenolics,carotenoids,Rubus fructicosus
更新于2025-09-04 15:30:14
-
Graphene Oxide as an Optical Biosensing Platform: A Progress Report
摘要: A few years ago, crucial graphene oxide (GO) features such as the carbon/oxygen ratio, number of layers, and lateral size were scarcely investigated and, thus, their impact on the overall optical biosensing performance was almost unknown. Nowadays valuable insights about these features are well documented in the literature, whereas others remain controversial. Moreover, most of the biosensing systems based on GO were amenable to operating as colloidal suspensions. Currently, the literature reports conceptually new approaches obviating the need of GO colloidal suspensions, enabling the integration of GO onto a solid phase and leading to their application in new biosensing devices. Furthermore, most GO-based biosensing devices exploit photoluminescent signals. However, further progress is also achieved in powerful label-free optical techniques exploiting GO in biosensing, particularly using optical fibers, surface plasmon resonance, and surface enhanced Raman scattering. Herein, a critical overview on these topics is offered, highlighting the key role of the physicochemical properties of GO. New challenges and opportunities in this exciting field are also highlighted.
关键词: bioanalytical applications,2D materials,label-free biosensors,optical devices,physicochemical properties
更新于2025-09-04 15:30:14