修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

51 条数据
?? 中文(中国)
  • [IEEE 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) - Karachi, Pakistan (2020.3.26-2020.3.27)] 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) - Soft Computing Technique based Nonlinear Sliding Mode Control for Stand-Alone Photovoltaic System

    摘要: Energy production capability of a photovoltaic (PV) system is extensively depends upon the ambient temperature (T) and solar irradiance (Ee). In order to adapt the ever increasing interest in energy, the PV array must be operated at the maximum power point (MPP). However, due to varying climatic conditions, there is a low energy ef?ciency problem. In this research article, a robust and ef?cient nonlinear sliding mode control (SMC) based maximum power point tracking (MPPT) technique is designed to extract maximum power from the PV array. This study uses arti?cial feed-forward neural network (AFNN) to generate the reference voltage for MPPT using non-inverting DC-DC Buck-Boost converter. Asymptotically convergence is ensures using Lyapunov stability criteria. The MATLAB/SIMULINK platform is used to design, simulate and test the performance of the proposed technique. To further validate the proposed control technique in terms of ef?ciency, tracking speed and robustness, results are compared with the non-linear backstepping (B) technique under continuous conditions of environment, faults and parametric uncertainties.

    关键词: Buck-Boost converter,Neural Network,MPPT,Photovoltaic,SMC

    更新于2025-09-23 15:21:01

  • Comparative Analysis of Intelligent Controller Based MPPT for Photovoltaic System with Super Lift Boost Converter

    摘要: In recent years, the electrical energy demand increases gradually and the power generation does not meet the demand due to lack of fossil fuel and environmental issues. The only solution is to use renewable energy sources for generating electricity and meet the consumers demand. In this paper, photovoltaic power system analyses their performance under various weather conditions. The objective of this paper is comparing the different intelligent controllers such as Fuzzy, ANFIS and Hybrid Fuzzy & Firefly Algorithm (HFFA) for Maximum Power Point Tracking (MPPT) of 100 Watts PV system using a Super Lift Boost Converter (SLBC). The proposed intelligent controller is designed and simulated in MATLAB environment under various weather conditions. The simulation results have been analyzed and the performance of the proposed model evaluated with changing irradiation conditions. Finally, the performance of Hybrid Fuzzy and firefly based MPPT has been suggested as the optimum controller for the photovoltaic system.

    关键词: photovoltaic,ANFIS,Fuzzy Logic,MPPT,MATLAB,HFFA,super-lift boost converter

    更新于2025-09-23 15:21:01

  • [IEEE 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) - Karachi, Pakistan (2020.3.26-2020.3.27)] 2020 International Conference on Emerging Trends in Smart Technologies (ICETST) - Terminal Sliding Mode Nonlinear Control Strategy for MPPT Application of Photovoltaic System

    摘要: The electricity generation from the photovoltaic (PV) system has been considered as an alternative energy resource to the fossil fuels since last decade. Solar energy is the most abundantly available renewable resource on earth. However, source to load conversion efficiency of PV system is low but installation cost is appreciable. In order to achieve maximum power, the system must be operated at maximum power point (MPP). Maximum power point tracking (MPPT) is very essential in the process of maximum power extraction of the PV system. This research article presents the terminal sliding mode control (TSMC) nonlinear MPPT control paradigm for stand-alone PV system using buck-boost converter. Radial basis function neural network (RBF NN) is generated the reference for the proposed TSMC in controller. The simulations are performed in MATLAB/Simulink. To evaluate the developed controller performance, TSMC is tested under varying conditions of environment and resistive load with fault and uncertainty. Moreover, proposed nonlinear TSMC MPPT control technique is compared with the conventional techniques such as proportional integral derivative (PID) and perturb and observe (P&O). The finite time stability analysis is explained via Lyapunov function.

    关键词: TSMC,Finite time stability,Buck-Boost converter,MPPT,RBF NN

    更新于2025-09-23 15:21:01

  • [IEEE 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) - Agadir, Morocco (2019.11.27-2019.11.30)] 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) - A Genetic Algorithm based Improve P&O-PI MPPT Controller for Stationary and Tracking Grid-Connected Photovoltaic System

    摘要: this paper deals the performance comparison and efficiencies of single-axis and dual-axis tracking PV system to an identical fixed-mount PV system for two typical clear sunny days (Ghardaia area), two typical days are chosen, the first day in winter and the second day in the summer. For the three types of PV systems, P&O-PI MPPT techniques optimized with a genetic algorithm is proposed. This paper has two different objectives. 1stly, a proposed MPPT technique has been presented to optimize P&O-PI controller via the GA technique to increase the tracking response of MPP with high efficiency and that improves the limitations of the traditional MPPT techniques. 2ndly, a performance comparison of efficiencies of single-axis and dual-axis tracking system and an identical fixed inclination system .Simulation results with MATLAB/SIMULINK are presented and discussed to verify the satisfactory performance of the proposed MPPT control, in which the optimized P&O-PI controller by GA algorithms gives the better performance. The simulation results also have shown that both single-axis and dual-axis are highly efficient in terms of the electrical energy output when compared to the fixed mount system. The results show the effectiveness of the tracking system of about 25% in energy efficiency.

    关键词: grid,photovoltaic system,dual‐axis tracking,P&O-PI,fixed array,boost converter,Genetic algorithm,single axis tracking,MPPT control

    更新于2025-09-23 15:21:01

  • [IEEE 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) - Agadir, Morocco (2019.11.27-2019.11.30)] 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) - Design and Performance Analysis of a Photovoltaic Water Pumping System based on DC-DC Boost Converter and BLDC Motor

    摘要: This paper presents the modeling, control and optimization of a photovoltaic water pumping system. The system consists of a DC-DC Boost converter, which is used as a link between a Solar Photovoltaic (SPV) panels and the three-phase inverter (VSI) to feed the BLDC motor. A centrifugal pump is connected to this motor in order to use the water pumped afterwards to multiple applications. Maximum Power Point Tracking (MPPT) control techniques are an essential part of improving the efficiency of photovoltaic (PV) systems. It is principally used to extract maximum possible power of the PV modules under any condition of solar irradiation. For this reason, P&O algorithm is used due to its high performance and its simplicity of implementation. The DC-DC Boost converter, compared to the various common DC-DC converters (Buck, Buck-Boost, SEPIC, Cuk...) has many benefits in SPV based applications, such as limiting the starting current of the motors. Using a BLDC motor is found to be the best option because of its high efficiency and reliability, better performance, and requires low maintenance. The considered system as well as the control strategies has been implemented in MATLAB-Simulink environment. The results show the effectiveness of the studied photovoltaic water pumping system.

    关键词: brushless DC electric motor,perturbation and observation,voltage source inverter,Boost converter,solar photovoltaic array,electronic commutation,centrifugal pump

    更新于2025-09-23 15:21:01

  • An Intelligent Maximum Power Point Tracking Algorithm for Photovoltaic System

    摘要: This work comprehensively demonstrates the performance analysis of Fuzzy Logic Controller (FLC) with Particle Swarm Optimization (PSO) Maximum Power Point Tracker (MPPT) algorithm on a stand-alone Photovoltaic (PV) applications systems. A PV panel, DC-DC Boost converter and resistive load was utilized as PV system. Three different MPPT algorithms were implemented in the converter. The result obtained from the converter was analyzed and compared to find the best algorithm to be used to identify the point in which maximum power can be achieve in a PV system. The objective is to reduce the time taken for the tracking of maximum power point of PV application system and minimize output power oscillation. The simulation was done by using MATLAB/Simulink with DC-DC Boost converter. The result shows that FLC method with PSO has achieved the fastest response time to track MPP and provide minimum oscillation compared to conventional P&O and FLC techniques.

    关键词: Maximum Power Point Tracking,DC-DC Boost Converter,Photovoltaic

    更新于2025-09-23 15:21:01

  • [IEEE 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) - Tehran, Iran (2020.2.4-2020.2.6)] 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) - Utilization of Soft-Switched Boost Converter for MPPT Application in Photovoltaic Single-Phase Grid-Connected Inverter

    摘要: A modified soft-switched boost converter with a lower number of auxiliary components is proposed in this paper that provides either zero-voltage-transition (ZVT) or zero-current-transition (ZCT) operation for main switch and diode. Proposed converter is utilized in a single-phase grid-tied photovoltaic power generation system. Due to importance of maximum power harvesting from PV, incremental conductance MPPT procedure is employed to control DC/DC converter. Simulation is performed in PLECS software to validate the advantageous introduced soft-switching technique.

    关键词: Zero-Voltage-Transition (ZVT),Zero-Current-Transition (ZCT),Single-Phase Grid-Connected Inverter,Incremental Conductance MPPT,Soft Switching Boost Converter

    更新于2025-09-23 15:21:01

  • Three-Legs Interleaved Boost Power Factor Corrector for High-Power LED Lighting Application

    摘要: In this article, a three-leg interleaved boost Power Factor Corrector (IBPFC) converter for energy-efficient LED lighting systems connected to the main grid was discussed. This IBPFC circuit presented features 60 kHz of commutation frequency and up to 3 kW of power rating. The controlled rectifier front-end boost PFC supplied a DC/DC converter to drive power LEDs suitable for street lighting or a lighting system for a stadium, etc. The IBPFC operated in continuous current mode (CCM). The ripple impact of the IBPFC converter was analyzed and a novel methodology of inductance design was presented. In the proposed design approach, the derivative calculation of the current ripple peak compared with the derivative of the input current was used to define a critical inductance value to ensure the CCM condition. Experimental validation was provided on a 3kW prototype.

    关键词: IGBT,continuous current mode (CCM),interleaved converters,three-phase boost converter,ripple analysis,high-power LED lighting,power factor correction (PFC)

    更新于2025-09-23 15:21:01

  • [IEEE 2020 IEEE Texas Power and Energy Conference (TPEC) - College Station, TX, USA (2020.2.6-2020.2.7)] 2020 IEEE Texas Power and Energy Conference (TPEC) - Design and Simulation of Multi-phase Multi-stage Interleaved Boost Converters for Photovoltaic Application

    摘要: This paper presents a new design of multi-stage multi-phase for Interleaved Boost Converters (IBCs) controlled by MPPT technqiue for each power switch. As the PV output current is usually high, the ?rst-stage is designed with four-phase IBC to absorb the high current and deliver the utmost power with less stress on switches and less components size. The current for the next stage is lower that makes three-phase IBC and two-phase IBC for the last stage. The simulation results approve the effectiveness of the modeling and analysis and verify that the proposed system design is suitable for PV application feeds a high voltage devices with less stress, less input current ripple, less output voltage ripple, and suf?cient ef?ciency.

    关键词: Interleaved boost converter,multi-stage converter,Photovoltaic,maximum power point tracking

    更新于2025-09-23 15:19:57

  • ICM based ANFIS MPPT controller for grid connected photovoltaic system

    摘要: In this paper, grid-connected photovoltaic (PV) system is presented. PV system consists of a photovoltaic module, a boost converter, and voltage source inverter. ANFIS based ICM (Incremental Conductance Method) MPPT (Maximum Power Point Tracking) controller is utilized to produce gate signal for DC-DC boost converter. This controller is used for optimizing the total performance of the Photovoltaic system in turn the errors were reduced in Voltage Source Inverter (VSI). The grid-connected PV system performance is evaluated and harmonics occurred in the system are decreased. The proposed methodology is implemented in MATLAB/Simulink.

    关键词: Photovoltaic (PV),Boost Converter,Incremental Conductance Method (ICM),ANFIS Controller,Voltage Source Inverter (VSI)

    更新于2025-09-23 15:19:57