- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Point defects and dopants of boron arsenide from first-principles calculations: Donor compensation and doping asymmetry
摘要: We apply hybrid density functional theory calculations to identify the formation energies and thermodynamic charge transition levels of native point defects, common impurities, and shallow dopants in BAs. We find that AsB antisites, boron-related defects such as VB, BAs, and Bi-VB complexes, and antisite pairs are the dominant intrinsic defects. Native BAs is expected to exhibit p-type conduction due to the acceptor-type characteristics of VB and BAs. Among the common impurities we explored, we found that C substitutional defects and H interstitials have relatively low formation energies and are likely to contribute free holes. Interstitial hydrogen is surprisingly also found to be stable in the neutral charge state. BeB, SiAs, and GeAs are predicted to be excellent shallow acceptors with low ionization energy (<0.03 eV) and negligible compensation by other point defects considered here. On the other hand, donors such as SeAs, TeAs SiB, and GeB have a relatively large ionization energy ((cid:2)0.15 eV) and are likely to be passivated by native defects such as BAs and VB, as well as CAs, Hi, and HB. The hole and electron doping asymmetry originates from the heavy effective mass of the conduction band due to its boron orbital character, as well as from boron-related intrinsic defects that compensate donors.
关键词: dopants,donor compensation,doping asymmetry,first-principles calculations,boron arsenide,point defects
更新于2025-09-11 14:15:04
-
Hydrogenation and Fluorination of 2D Boron Phosphide and Boron Arsenide: A Density Functional Theory Investigation
摘要: First-principles density functional theory calculations are performed to study the stability and electronic properties of hydrogenated and fluorinated two-dimensional sp3 boron phosphide (BP) and boron arsenide (BAs). As expected, the phonon dispersion spectrum and phonon density of states of hydrogenated and fluorinated BX (X = P, As) systems are found to be different, which can be attributed to the different masses of hydrogen and fluorine. Hydrogenated BX systems bear larger and indirect band gaps and are found to be different from fluorinated BX systems. These derivatives can be utilized in hydrogen storage applications and ultrafast electronic devices. Finally, we investigated the stability and electronic properties of stacked bilayers of functionalized BP. Interestingly, we found that these systems display strong interlayer interactions, which impart strong stability. In contrast with the electronic properties determined for the fluorinated/hydrogenated monolayers, we found that the electronic properties of these bilayers can finely be tuned to a narrow gap semiconductor, metallic or nearly semimetallic one by selecting a suitable arrangement of layers. Moreover, the nearly linear dispersion of the conduction band edge and the heavy-, light-hole bands are the interesting characteristics. Furthermore, the exceptional values of effective masses assure the fast electronic transport, making this material very attractive to construct electronic devices.
关键词: boron phosphide,boron arsenide,hydrogenation,fluorination,density functional theory,electronic properties,stability
更新于2025-09-10 09:29:36
-
Elastic and thermophysical properties of BAs under high pressure and temperature
摘要: The pseudopotential plane-wave approach in the framework of the density functional theory, and the density functional perturbation theory with the generalized gradient approach for the exchange-correlation functional has been used to calculate the structural phase stability, elastic constants and thermodynamic properties of boron-arsenide (BAs) compound. The BAs compound transforms from the zincblende phase to rock-salt structure; the phase transition pressure was found to be 141.2 GPa with a volume contraction of around 8.2 %. The thermodynamic properties under high pressure and temperature up to 125 GPa and 1200 K respectively were also determined, analyzed and discussed in comparison with other data of the literature. The systematic errors in the static energy were corrected using the bpscal EEC method. Our results agree well with those reported in the literature, where for example, our calculated melting temperature (2116 K) deviates from the theoretical one (2132.83 K) with only 0.8 %, and the deviation between our result (1.86) of the Grüneisen parameter and the theoretical one (1.921) is only around 3.2 %.
关键词: Phase transition,Thermodynamic properties,High-pressure,High-temperature,Boron arsenide
更新于2025-09-09 09:28:46
-
Impurity-derived <i>p</i> -type conductivity in cubic boron arsenide
摘要: Cubic boron arsenide (c-BAs) exhibits an ultrahigh thermal conductivity (j) approaching 1300 Wm(cid:2)1 K(cid:2)1 at room temperature. However, c-BAs is believed to incorporate high concentrations of crystal imperfections that can both quench j and act as sources of unintentional p-type conductivity. Although this behavior has been attributed to native defects, we show here, using optical and magnetic resonance spectroscopies together with first-principles calculations, that unintentional acceptor impurities such as silicon and/or carbon are more likely candidates for causing the observed conductivity. These results also clarify that the true low-temperature bandgap of c-BAs is 0.3 eV higher than the widely reported value of (cid:3)1.5 eV. Low-temperature photoluminescence measurements of c-BAs crystals reveal impurity-related recombination processes (including donor-acceptor pair recombination), and electron paramagnetic resonance experiments show evidence for effective mass-like shallow acceptors. Our hybrid density functional calculations indicate that native defects are incapable of giving rise to such signals. Instead, we find that group-IV impurities readily incorporate on the As site and act as shallow acceptors. Such impurities can dominate the electrical properties of c-BAs, and their influence on phonon scattering must be considered when optimizing thermal conductivity.
关键词: thermal conductivity,first-principles calculations,p-type conductivity,photoluminescence,impurities,cubic boron arsenide,electron paramagnetic resonance
更新于2025-09-04 15:30:14