- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Galliuma??Borona??Phosphide ($$\hbox {GaBP}_{2}$$): a new IIIa??V semiconductor for photovoltaics
摘要: Using machine learning (ML) approach, we unearthed a new III–V semiconducting material having an optimal bandgap for high-efficient photovoltaics with the chemical composition of Gallium–Boron–Phosphide (GaBP2, space group: Pna21). ML predictions are further validated by state-of-the-art ab initio density functional theory simulations. The stoichiometric Heyd–Scuseria–Ernzerhof bandgap of GaBP2 is noted to be 1.65 eV, a close ideal value (1.4–1.5 eV) to reach the theoretical Queisser–Shockley limit. The calculated electron mobility is similar to that of silicon. Unlike perovskites, the newly discovered material is thermally, dynamically and mechanically stable. Above all the chemical composition of GaBP2 is non-toxic and relatively earth abundant, making it a new generation of PV material. Using ML, we showed that with a minimal set of features, the bandgap of III–III–V and II–IV–V semiconductor can be predicted up to an RMSE of less than 0.4 eV. We have presented a set of scaling laws, which can be used to estimate the bandgap of new III–III–V and II–IV–V semiconductor, with three different crystal phases, within an RMSE of 0.4 eV.
关键词: Gallium–Boron–Phosphide,photovoltaics,GaBP2,III–V semiconductor,density functional theory,machine learning
更新于2025-09-23 15:21:01
-
Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study
摘要: Blue phosphorene (Blue-p), an allotrope of black phosphorene, has attracted extensive interest due to its hexagonal crystal with a flat arranged layer of phosphorus atoms. However, the indirect band gap of Blue-p greatly hinders its applications in optoelectronics. By stacking both boron phosphide (BP) and the organic molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) with Blue-p, we construct BP/Blue-p and F4TCNQ/Blue-p heterostructures. We reveal that the BP/Blue-p heterostructure possesses a direct band gap of 0.605 eV and is tunable via in-plane strain and an external electric field. Moreover, it also has remarkable optical absorption in the UV region and enhanced transport properties. Furthermore, by doping with F4TCNQ, the F4TCNQ/Blue-p heterojunction displays type-II semiconducting properties with a flat valence band and Van Hove singularities at the Fermi level, which can be used to achieve extremely low in-band tunneling, yielding low static power dissipation and large drive currents in the ON regime of transistors. Due to the superior electronic, optical and transport properties, Blue-p-based heterostructures are promising candidates for electronic and optical device applications.
关键词: DFT,optical properties,electronic properties,transport properties,Blue phosphorene,heterostructures,boron phosphide,F4TCNQ,NEGF
更新于2025-09-23 15:19:57
-
Hydrogenation and Fluorination of 2D Boron Phosphide and Boron Arsenide: A Density Functional Theory Investigation
摘要: First-principles density functional theory calculations are performed to study the stability and electronic properties of hydrogenated and fluorinated two-dimensional sp3 boron phosphide (BP) and boron arsenide (BAs). As expected, the phonon dispersion spectrum and phonon density of states of hydrogenated and fluorinated BX (X = P, As) systems are found to be different, which can be attributed to the different masses of hydrogen and fluorine. Hydrogenated BX systems bear larger and indirect band gaps and are found to be different from fluorinated BX systems. These derivatives can be utilized in hydrogen storage applications and ultrafast electronic devices. Finally, we investigated the stability and electronic properties of stacked bilayers of functionalized BP. Interestingly, we found that these systems display strong interlayer interactions, which impart strong stability. In contrast with the electronic properties determined for the fluorinated/hydrogenated monolayers, we found that the electronic properties of these bilayers can finely be tuned to a narrow gap semiconductor, metallic or nearly semimetallic one by selecting a suitable arrangement of layers. Moreover, the nearly linear dispersion of the conduction band edge and the heavy-, light-hole bands are the interesting characteristics. Furthermore, the exceptional values of effective masses assure the fast electronic transport, making this material very attractive to construct electronic devices.
关键词: boron phosphide,boron arsenide,hydrogenation,fluorination,density functional theory,electronic properties,stability
更新于2025-09-10 09:29:36