- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis
摘要: The decomposition of the Mueller matrix of blood films has been carried out using differential matrices with polarized and depolarized parts. The use of a coherent reference wave is applied and the algorithm of digital holographic reconstruction of the field of complex amplitudes is used. On this basis, the 3D Mueller-matrix diffuse tomography method—the reconstruction of distributions of fluctuations of linear and circular birefringence of depolarizing polycrystalline films of human blood is analytically justified and experimentally tested. The dynamics of the change in the magnitude of the statistical moments of the first-fourth order, which characterize layer-by-layer distributions of fluctuations in the phase anisotropy of the blood film, is examined and analyzed. The most sensitive parameters for prostate cancer are the statistical moments of the third and fourth orders, which characterize the asymmetry and kurtosis of fluctuations in the linear and circular birefringence of blood films. The excellent accuracy of differentiation obtained polycrystalline films of blood from healthy donors and patients with cancer patients was achieved.
关键词: polarimetry,Mueller-matrix,blood,cancer diagnostics,polarization
更新于2025-09-23 15:23:52
-
Bioplasmonic paper–based assay for perilipin-2 non-invasively detects renal cancer
摘要: Renal cell carcinoma (RCC) has poor survival prognosis because it is asymptomatic at an early, more curative stage. Recently, urine perilipin-2 (PLIN-2) was demonstrated to be a sensitive and speci?c biomarker for the noninvasive, early detection of RCC and an indispensable indicator to distinguish cancer from a benign renal mass. However, current Western blot or ELISA PLIN-2 assays are complicated, expensive, time-consuming or insensitive, making them unsuitable for routine analysis in clinical settings. Here we developed a plasmonic biosensor based on the high refractive index sensitivity of gold nanorattles for the rapid detection of PLIN-2 in patient urine. The paper-based plasmonic assay is highly sensitive and has a dynamic range of 50 pg/ml to 5 mg/ml PLIN-2. The assay is not compromised by variations in urine pH or high concentrations of interfering proteins such as albumin and hemoglobin, making it an excellent candidate for routine clinical applications. The urine PLIN-2 assay readily distinguished patients with pathologically proven clear cell carcinomas of various size, stage and grade (55.9 [39.5, 75.8] ng/ml, median [1st and 3rd quartile]) from age-matched controls (0.3 [0.3, 0.5] ng/ml), patients with bladder cancer (0.5 [0.4, 0.6] ng/ml) and patients with diabetic nephropathy (0.6 [0.4, 0.7] ng/ml). Urine PLIN-2 concentrations were roughly proportional to tumor size (Pearson coef?cient 0.59). Thus, this cost-effective and label-free method represents a novel approach to conduct a non-invasive population screen or rapid differential diagnosis of imaged renal masses, signi?cantly facilitating the early detection and diagnosis of RCC.
关键词: cancer biomarkers,cancer diagnostics,renal cancer,bioplasmonic assay
更新于2025-09-12 10:27:22
-
Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: Detection of bladder cancer
摘要: We report an approach in diagnostic imaging based on nanoscale-resolution scanning of surfaces of cells collected from body fluids using a recent modality of atomic force microscopy (AFM), subresonance tapping, and machine-leaning analysis. The surface parameters, which are typically used in engineering to describe surfaces, are used to classify cells. The method is applied to the detection of bladder cancer, which is one of the most common human malignancies and the most expensive cancer to treat. The frequent visual examinations of bladder (cytoscopy) required for follow-up are not only uncomfortable for the patient but a serious cost for the health care system. Our method addresses an unmet need in noninvasive and accurate detection of bladder cancer, which may eliminate unnecessary and expensive cystoscopies. The method, which evaluates cells collected from urine, shows 94% diagnostic accuracy when examining five cells per patient’s urine sample. It is a statistically significant improvement (P < 0.05) in diagnostic accuracy compared with the currently used clinical standard, cystoscopy, as verified on 43 control and 25 bladder cancer patients.
关键词: diagnostic imaging,cancer diagnostics,atomic force microscopy,machine learning,noninvasive methods
更新于2025-09-09 09:28:46