修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

207 条数据
?? 中文(中国)
  • Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications || Classic Carbon Nanostructures

    摘要: The era of carbon-based nanotechnology, as it is well-known, started from 1985 when the fullerene C60 was discovered. The rediscovery of carbon nanotubes and unexpected discovery of graphene gave a powerful impulse to the further development of carbon nanostructures. At present, these nanocarbons, as well as nanodiamonds or nanofibers, can already be considered as 'conventional' carbon nanostructures.

    关键词: nanofibers,nanodiamonds,carbon nanotubes,graphene,carbon nanostructures,fullerenes

    更新于2025-09-23 15:23:52

  • Preparation of graphene nanoribbons (GNRs) from twisted structure carbon nanotubes using unzipping technique

    摘要: This work deals with the preparation of graphene nano ribbons (GNRs), which are small bars or strips of graphene with narrow range width less than 50 nm and one atom thick sheet (approximately 140 °A). This material has many applications in electronics, polymer composite, contrast agent bio-imaging and others. This material was prepared from twisted structure of carbon nanotubes CNTs using oxidation process by acids and breaking down by high frequency ultrasonication (sonochemical unzipping). Pre-prepared twisted CNTs were characterized by scanning electron microscope (HRSEM) before treatment. The size, morphology, crystallinity of prepared graphene nanoribbons was also investigated using transmission electron microscope, high resolution transmission electron microscope, and X-ray diffraction and particle size analyzer. The results showed of formation of GNRs with narrow width as lower than 29 nm and uniform sizes. X-ray diffraction reveals Bragg reflections corresponding to the lattice planes (002), (100), (101), (004), and (110) matched with hexagonal system of graphite.

    关键词: sonochemical unzipping,Twisted carbon nanotubes,graphene nanoribbons

    更新于2025-09-23 15:23:52

  • Mass Production of High-Purity Semiconducting Carbon Nanotubes by Hydrochloric Acid-assisted Gel Chromatography

    摘要: Mass production of high-purity semiconducting single-wall carbon nanotubes (s-SWCNTs) is critical for their application in the electronic and optoelectronic devices. Here we reported a method for the high-efficiency separation of high-purity s-SWCNTs with the acid-assisted gel chromatography, in which hydrochloric acid (HCl) was used to selectively oxidize metallic SWCNTs (m-SWCNTs) and enhance the difference in the interaction of metallic and semiconducting nanotubes with gel. Specifically, the concentration of HCl in the eluent was gradually increased to elute the carbon nanotubes adsorbed in the gel column step by step. The m-SWCNTs were firstly eluted at a low HCl concentration, and high-purity s-SWCNTs were selectively eluted at a higher HCl concentration. The final residues containing a relatively high content of m-SWCNTs and amorphous carbon impurities were left in the gel columns. Optical and electrical characterizations confirmed that the purity of the s-SWCNTs extracted from various raw SWCNT materials, especially CoMoCAT (7, 6), was improved greatly. Moreover, multiple single-chirality SWCNTs were firstly separated from the purified semiconducting CoMoCAT (7, 6) nanotubes. Our present work provides a simple and controllable way for the mass separation of high-purity s-SWCNTs and single-chirality species, which would accelerate their application in the field of electronics, optoelectronics and bio-imaging.

    关键词: hydrochloric acid,separation,gel chromatography,Semiconducting carbon nanotubes,single-chirality

    更新于2025-09-23 15:23:52

  • Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes

    摘要: Synthetic dye pollution is a worldwide problem and quick remedies are urgently needed. Photocatalysis is a promising method to solve this problem and carbon nanotubes (CNTs) are promising components in producing high-performance composite photocatalysts. Nevertheless, the strong hydrophobicity dramatically impedes its application in aqueous environments. In this study, hydrophilic CNT-hybrid metal oxides (ZnO and TiO2) membranes were prepared by atomic layer deposition (ALD). We demonstrate that ALD is an efficient and flexible method to enhance the photocatalytic activity of CNT-based membranes, especially the membranes used in wastewater treatments. The hybrid hexagonal wurtzite ZnO and anatase TiO2 on CNTs after calcination could effectively enhance electron transfer and reduce photo-generated electron-holes recombination. The membranes exhibit preferable photocatalytic activity and stable reusability in dye degradation. This strategy of "ALD on CNTs" is expected to create other CNT-based membranes with additional functionalities and has bright prospect for wastewater treatments.

    关键词: Carbon nanotubes,Photocatalytic degradation,Hybrid metal oxides,Atomic layer deposition

    更新于2025-09-23 15:23:52

  • Theoretical and experimental insights into the effects of oxygen-containing species within CNTs towards triiodide reduction

    摘要: Heteroatom-doped micro/nano-structured carbon materials feature unique superiorities for replacement of noble metal Pt counter electrode (CE) in dye-sensitized solar cells. Nevertheless, the effects of oxygen-containing species on/within carbon matrix on its electrocatalytic activity are seldomly considered and concerned, which will be hindered by a trade off between oxygen defects and conductivity. Herein, we present activated carbon nanotubes (P-CNTs) with abundant active edge sites and oxygen species for simultaneous achieving the activation of sidewalls and open ends. Also, the positive effects of oxygen species are decoupled by experimental data together with theoretical analysis. When capitalizing on the P-CNTs as the CE of DSSCs, the device delivers a high power conversion efficiency of 8.35% and an outstanding electrochemical stability, outperforming that of Pt reference (8.04%). The density functional theory calculation reveals that compared with the carboxylic groups, the hydroxyl groups and carbonyl groups on the surface of CNTs can greatly reduce the ionization energy of reaction, accelerate the electron transfer from external circuit to triiodide, thus being responsible for an enhanced electrocatalytic performance. This work demonstrates that a certain amount of oxygen atoms within carbon materials is also indispensable for the improvement in the reactivity of the triiodide.

    关键词: Counter electrodes,Triiodide reduction,Defective carbon nanotubes,Ionization energy,Electrochemical stability,Oxygen species

    更新于2025-09-23 15:23:52

  • Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging

    摘要: Pancreatic cancer is one of the most lethal malignancies worldwide. The existing therapeutic regimen in the clinic for advanced inoperable carcinomas are far from satisfactory, thus it is urgent to seek more effective anticancer strategies. In the pursuit of novel, more effective interventions, photothermal therapy (PTT) based on nanomaterials has attracted increased attention. Recent advances in related fields have catalyzed the generation of novel nanoprobes, such as organic dyes, metal nanoparticles. However, organic dyes are poorly stable and easy to quench while metal nanoparticles with potential metal toxicity are difficult to degrade, both of which have low light-to-heat conversion efficiency, broad spectrum of anti-tumor effects, and lack of tumor targeting specificity. Single-walled carbon nanotubes (SWNTs) can remedy the above inadequacies. Herein, we report our water-soluble, bio-stable and low-toxicity SWNTs with excellent photothermal conversion efficiency. Specific modifications can enable visualization of the aggregate characteristics of SWNTs at the macroscopic or microscopic level in tumors. The dye-conjugated SWNTs bound with targeting antibodies that can induce them specifically targeting to pancreatic tumors for purposes of performing dyes imaging-guided cytotoxic PTT. PTT using this method achieves precise and excellent curative effects with minimal adverse effects, thus providing a promising strategy for anticancer therapy.

    关键词: Single-walled carbon nanotubes,Imaging,IGF-1R,Pancreatic cancer,Photothermal therapy

    更新于2025-09-23 15:23:52

  • State-of-the art non-destructive techniques for defects detection in nanocomposites foam-core sandwich panels containing carbon nanotubes: IR thermography and microwave imaging

    摘要: In this article, the state-of-the art of infrared (IR) thermography and microwave non-destructive (NDT) testing for inspection of defects in carbon nanotubes-based nanocomposite sandwich panels has been presented. Di?erent types of defects such as holes, notches and inclusion (Te?on) have been simulated in the polymeric foam-core of sandwich panels. The infrared (IR) thermography and microwave methods have been conducted to assess the simulated defects in the sandwich panel. The thermography results revealed that the thermal energy absorbance was higher in sandwich panel containing multi-walled carbon nanotubes (MWCNTs), however, various types of defects were well detected in both specimens with and without MWCNTs. From the result of microwave imaging, the same probability of NDT inspection was observed for detecting subsurface defects in sandwich panel and its nanocomposites. The use of low content of MWCNT (0.5 wt%) did not signi?cantly a?ect on the microwave absorption properties of sandwich panel among NDT procedure, however some changes of re?ection coe?cient amplitude in selected frequency bands were observable.

    关键词: Multi-walled carbon nanotubes,Sandwich structures,Non-destructive testing,Nanocomposites

    更新于2025-09-23 15:23:52

  • Resonant Enhancement of THz Radiation Through Vertically Aligned Carbon Nanotubes Array by Applying Wiggler Magnetic Field

    摘要: The present analysis develops a novel theory of terahertz radiation generation by beating of two laser beams, incident obliquely on the array of vertically aligned carbon nanotubes (CNTs) in the presence of an external wiggler magnetic field. The array of CNTs behaves as nanoantenna to generate THz radiations. The incident lasers exert a ponderomotive force on the electrons of the CNTs to produce nonlinear oscillatory velocity, which beats with the applied wiggler magnetic field. This beating produces a nonlinear current at (ω2 ? ω1, k2 ? k1 + k0) which acts as an antenna to produce the THz radiation. We observe that when the beat frequency (ω2 ? ω1) lies near the effective plasmon frequency of the CNTs, strong THz radiation is produced due to a resonant interaction of the laser with CNT electrons. The externally applied wiggler magnetic field enhances the efficiency of THz radiation of nanoantenna by providing the necessary momentum to the generated THz radiation. We explore the impact of radius and length of nanotubes on the efficiency of THz generation. The generated THz power is enhanced at an optimum angle of incidence of lasers with an array of CNTs.

    关键词: THz radiation,Carbon nanotubes,Antenna theory,Wiggler magnetic field,Plasma,Nanotechnology

    更新于2025-09-23 15:23:52

  • Raman Spectroscopy || Graphene Nanocomposites Studied by Raman Spectroscopy

    摘要: The goal of this chapter is to provide a general introduction about graphene nanocomposites studied by Raman spectroscopy. The chapter will therefore begin with a brief description of the major Raman bands of carbon allotropes. In the following chapter a concise comparison between single walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerenes and graphene is exposed. The characteristic features in Raman spectra of carbon allotropes, namely the intense signals D and G are investigated. In particular, the chapter will outline the Raman spectrum of graphene and different types of graphene oxide. The last part of the chapter is devoted to graphene nanocomposites.

    关键词: carbon nanotubes,graphene Raman bands,graphene oxide,polymeric nanocomposites,carbon allotropes

    更新于2025-09-23 15:22:29

  • Photo-refreshable electrochemical sensor based on composite electrode of carbon nanotubes and TiO2 nanoparticles

    摘要: Surface fouling and passivation on the electrode during electrochemical process is a major challenge for the practical applications of electrochemical sensors. Herein, a photo-refreshable electrochemical sensor was presented based on carbon nanotubes/TiO2 nanoparticles (CNTs/TiO2-NPs) composite electrode, which not only exhibits high electrochemical activity towards the determination of 5-hydroxytryptamine and dopamine, but also displays excellent reproducibility in the surface electrochemical monitoring without damaging microstructure. The linear range for 5-hydroxytryptamine determination is 0.5-400 μM (R=0.991) under UV light irradiation with a detection limit of 0.47 μM (S/N=3). The CNTs/TiO2-NPs electrode also shows excellent response to dopamine, with the linear range of 0.05 μM to 100 μM and a detection limit of 0.022 μM (S/N =3). The high performance of this photo-refreshable electrochemical sensor should be attributed to the excellent photocatalytic activity of the TiO2-NPs and the high electrochemical activity of CNTs.

    关键词: carbon nanotubes,photocatalysis,TiO2 nanoparticles,electrochemical sensors,surface fouling

    更新于2025-09-23 15:22:29