修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

122 条数据
?? 中文(中国)
  • Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform

    摘要: In this work, manganese-doped carbon quantum dots (Mn-CQDs) have been synthesized through a one-pot hydrothermal method by using waste green tea. The Mn2+ dopants were introduced to impart magnetic resonance capability. Upon optimization of the experimental conditions, magnetofluorescent Mn-CQDs exhibit an excitation-dependent blue emission. The abundant functional groups on Mn-CQDs not only promote water solubility but also allow straightforward functionalization with amine groups. The amine-terminated Mn-CQDs were then subsequently conjugated to folic acid (FA) and chlorin e6 (Ce6) to obtain the Mn-CQDs@FA/Ce6 magnetofluorescent photodynamic therapy (PDT) agent. in vitro studies using three different cells indicated specific targeting of Mn-CQDs@FA/Ce6 to the overexpressing folate receptor human epithelial carcinoma cell line (HeLa) cancer cells. Furthermore, Mn-CQDs@FA/Ce6 enhanced magnetic resonance imaging (MRI) signal with an r2/r1 ratio of 5.77. Favorably, by using the Mn-CQDs@FA delivery system, active Ce6 can reach the cellular interior while its red fluorescence (FL) and reactive oxygen species generation can be retained, as has been verified by confocal microscopy. in vitro cell viability studies verified the biocompatibility of Mn-CQDs@FA/Ce6 nanohybrid with no significant toxicity up to 500 ppm while PDT treatment with 5 min irradiation (671 nm, 1 W cm?2) was effective in killing >90% of cells. The light-triggered Mn-CQDs@FA/Ce6 multifunctional hybrid can serve as a dual-modal FL/MRI probe and as an efficient PDT agent to detect and eradicate cancer cells remotely.

    关键词: Mn dopant,photoluminescence,carbon quantum dots,photodynamic therapy,MRI

    更新于2025-09-19 17:13:59

  • One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection

    摘要: N and S co-doped carbon quantum dots (N, S-CQDs) with a high fluorescence quantum yield (12.6%) were synthesized by a one-pot hydrothermal method. Results indicate that the N, S-CQDs have a small particle size and an amorphous structure, exhibiting unique surface states and excitation wavelength-independent fluorescent properties. Co-doping of N and S increases the electron-transfer rate and improves the coordination interaction between the N, S-CQDs and Hg2+ ions. The N, S-CQDs show a high sensitivity and selectivity in detecting Hg2+ ions even for a lake water sample. They are promising fluorescence probes for environmental monitoring.

    关键词: Hg2+ ions detection,Co-doped,L-cysteine,Photoluminescent,Carbon quantum dots

    更新于2025-09-19 17:13:59

  • PMMA Thin Film with Embedded Carbon Quantum Dots for Post-Fabrication Improvement of Light Harvesting in Perovskite Solar Cells

    摘要: Perovskite solar cells (PSCs) with a standard sandwich structure suffer from optical transmission losses due to the substrate and its active layers. Developing strategies for compensating for the losses in light harvesting is of significant importance to achieving a further enhancement in device efficiencies. In this work, the down-conversion effect of carbon quantum dots (CQDs) was employed to convert the UV fraction of the incident light into visible light. For this, thin films of poly(methyl methacrylate) with embedded carbon quantum dots (CQD@PMMA) were deposited on the illumination side of PSCs. Analysis of the device performances before and after application of CQD@PMMA photoactive functional film on PSCs revealed that the devices with the coating showed an improved photocurrent and fill factor, resulting in higher device efficiency.

    关键词: PMMA,light harvesting,carbon quantum dots,Perovskite solar cell,down-conversion

    更新于2025-09-19 17:13:59

  • Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission

    摘要: Aggregation-caused quenching (ACQ) effect, known as the main cause to restrain solid-state luminescence of carbon quantum dots (CQDs), hinders further application of CQDs in white light-emitting diodes (WLED). Here, a complex of CQDs and phthalimide crystals (CQDs/PC) was prepared through a one-step solvothermal method. CQDs/PC prevented CQDs from touching directly by embedding the CQDs in phthalimide crystal matrix in situ, which effectively reduced the ACQ effect. Furthermore, CQDs/PC exhibited multi-peak fluorescence spectra that span the green, yellow and orange spectral regions. Finally, a WLED fabricated based on CQDs/PC achieved a color-rendering index of 82 and a correlated color temperature of 5430 K. This work provides a quick and effective strategy to apply CQDs to WLED.

    关键词: solid-state luminescence,multi-peak emission,yellow carbon quantum dots,white light-emitting diode

    更新于2025-09-19 17:13:59

  • Machine learning assisted dual-channel carbon quantum dots-based fluorescence sensor array for detection of tetracyclines

    摘要: The detection and differentiation of tetracyclines (TCs) has received increasing attention due to the severe threat they pose to human health and the ecological balance. A dual-channel fluorescence sensor array based on two carbon quantum dots (CDs) was fabricated to distinguish between four TCs, including tetracycline (TC), oxytetracycline (OTC), doxycycline (DOX), and metacycline (MTC). A distinct fluorescence variation pattern (I/I0) was produced when CDs interacted with the four TCs. This pattern was analyzed by LDA and SVM. This was the first time that SVM was used for data processing of fluorescence sensor arrays. LDA and SVM showed that the array has the capacity for parallel and accurate determination of TCs at concentrations between 1.0 μM and 150 μM. In addition, the interference experiment using metal ions and antibiotics as possible coexisting interference substances proves that the sensor array has excellent selectivity and anti-interference ability. The array was also used for the accurate detection and identification of TCs in binary mixtures, and furthermore, the four TCs were successfully identified in river water and milk samples. Besides, the sensor array successfully identified the four TCs in 72 unknown samples with a 100% accuracy. The results proved that SVM can achieve the same accurate classification and prediction as LDA, and considering its additional advantages, it can be used as an optional supplementary method for data processing, thereby expanding the data processing field.

    关键词: linear discriminant analysis,sensor array,support vector machine,tetracyclines,carbon quantum dots

    更新于2025-09-19 17:13:59

  • Layer by Layer Self-Assembly of Hollow Nitrogen-Doped Carbon Quantum Dots on Cationized Textured Crystalline Silicon Solar Cells for Efficient Energy Down-Shift

    摘要: Enhancing the efficiency of crystalline silicon solar cell (c-Si SC) by coating the energy shifting layer of quantum dots (QDs) is a recent approach to efficiently utilize the high energy spectrum of light. Carbon QDs are an attractive candidate for such applications, however, small Stokes shift and non-uniform coating due to high aggregation are the bottlenecks to fully utilize their potential. For the purpose, here we propose a layer by layer self-assembled uniform coating of ecofriendly red-emissive hollow nitrogen-doped carbon QDs (NR-CQDs), as an efficient energy-down shifting layer. A unique hollow and conjugated structure of NR-CQDs was designed to achieve a large Stokes shift (UV excited - red emission), with a quantum yield (QY) comparable to Cd/Pb QDs. Highly uniform coating of intrinsically negatively charged NR-CQDs on c-Si SCs was achieved by cationizing the c-Si SC by Bovine serum albumin (BSA), under mildly acidic conditions. By opposite charge assisted self-assembled over-layer, the short-circuit current density (Jsc) and power-conversion efficiency was increased by 5.8%, which is attributed to the large Stokes shift (255 nm) and high QY. Blue-emissive undoped-carbon QDs were synthesized for comparison with the proposed NR-CQDs, to elucidate the significance of the novel proposed structure.

    关键词: energy-downshift,crystalline silicon solar cells,layer by layer self-assembly,Nitrogen-doped carbon quantum dots,cationization,photoluminescence

    更新于2025-09-19 17:13:59

  • Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells

    摘要: In order to improve the power conversion efficiency (PCE) of quantum dot-sensitized solar cells (QDSC), a series of absorbent cotton derived carbon quantum dots (CQDs) with different dopants (namely carbamide, thiourea, and 1,3-diaminopropane) have been successfully synthesized by a one-pot hydrothermal method. The average particle sizes of the three doped CQDs are 1.7 nm, 5.6 nm, and 1.4 nm respectively, smaller than that of the undoped ones (24.2 nm). The morphological and structural characteristics of the four CQDs have been studied in detail. In addition, the three doped CQDs exhibit better optical properties compared with the undoped ones in the UV-vis and PL spectra. Then CQD-based QDSC are experimentally fabricated, showing that the short current density (Jsc) and open circuit voltage (Voc) of the QDSC are distinctly improved owing to the dopants. Especially the QDSC with the 1,3-diaminopropane doped CQD achieves the highest PCE (0.527%), 299% larger than that without dopant (0.176%). In order to highlight a reasonable mechanism, the UV-vis diffuse reflectance spectrum of CQD sensitized TiO2 and the calculated energy band structures of various CQDs are investigated. It’s found from the above analysis that the addition of carbamide, thiourea, and 1,3-diaminopropane is beneficial to obtain CQDs of smaller size, and with a smaller band gap and more nitrogenous or sulphureous functional groups, which enhance the light absorption performance and photo-excitation properties. The above factors are helpful to improve the Jsc of QDSC. Nitrogen, acting as a donor to the CQDs, will assist the sensitized photoanode with a higher Fermi level, resulting in a larger Voc of the QSDC. Finally this study builds the relation among the microstructure of the CQDs, three characteristics of the CQDs (namely the spectra, energy band structure and functional groups) and the photoelectric properties of the QDSC, which will provide guidance for the modulation doping of CQDs to improve the PCE of QDSC.

    关键词: dopants,carbon quantum dots,hydrothermal method,power conversion efficiency,quantum dot-sensitized solar cells

    更新于2025-09-16 10:30:52

  • Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering and nursing care application

    摘要: Tissue engineering and stem cell rehabilitation are the hopeful aspects that are being investigated for the management of Myocardial Infarction (MI); cardiac patches have been used to start myocardial rejuvenation. In this study, we engineered p-phenylenediamine surface functionalized (modif-CQD) into the Silk fibroin/PLA (SF/PLA) nanofibrous bioactive scaffolds with improved physico-chemical abilities, mechanical and cytocompatibility to cardiomyocytes. The micrograph results visualized the morphological improved spherical modif-CQD have been equivalently spread throughout the SF/PLA bioactive cardiac scaffolds. The fabricated CQD@SF/PLA nanofibrous bioactive scaffolds were highly porous with fully consistent pores; effectively improved young modulus and swelling asset for the suitability and effective implantation efficacy. The scaffolds were prepared with rat cardiomyocytes and cultured for up to 7 days, without electrical incentive. After 7 days of culture, the scaffold pores all over the construct volume were overflowing with cardiomyocytes. The metabolic activity and viability of the cardiomyocytes in CQD@SF/PLA scaffolds were significantly higher than cardiomyocytes in Silk fibroin /PLA scaffolds. The integration of CQD also influenced greatly and increases the expression of cardiac- marker genes. The results of the present investigations evidently recommended that well-organized cardiac nanofibrous scaffold with greater cardiac related mechanical abilities and biocompatibilities for cardiac tissue engineering and nursing care applications.

    关键词: Scaffolds,PLA,Carbon Quantum Dots,Silk fibroin

    更新于2025-09-16 10:30:52

  • Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications

    摘要: CQDs are a new class of carbon material with ultrafine sizes and readily tunable optical properties, which make them extremely intriguing. CQDs have gained widespread attention due to their potential and versatility, and they can be applied in many different fields. One of their many applications is photocatalysis, which has garnered incessant research interest in recent years. State-of-the-art technology utilizes sustainable solar energy, which is both clean and virtually inexhaustible. To date, the photocatalytic performance of CQDs in their raw form is still far from ideal. Nevertheless, they can be substantially enhanced through several modification techniques. In this review, strategies to improve the photocatalytic performance of CQDs, such as size-tuning, surface passivation and functionalization, and elemental doping, are extensively discussed. The review also covers the latest advances in the use of CQDs in photocatalysis to address both environmental and energy-related issues. Particular emphasis is placed on the formation of 0D/2D heterojunction nanocomposites with several 2D materials, such as graphene, graphitic carbon nitride, metal oxides and metallates, metal oxyhalides, transition metal oxides and chalcogenides. The hybridization routes to binary nanocomposites, and their photocatalytic application to carbon dioxide reduction, hydrogen production, and dye and pollutant degradation, are thoroughly reviewed in this paper.

    关键词: Two-dimensional materials,Photocatalysis,Energy generation,Carbon quantum dots,Environmental remediation,Heterojunction nanocomposites

    更新于2025-09-16 10:30:52

  • Red-emissive nitrogen doped carbon quantum dots for highly selective and sensitive fluorescence detection of the alachlor herbicide in soil samples

    摘要: Red-emissive nitrogen doped carbon quantum dots (N-CQDs) were synthesized by a facile and efficient microwave-assisted hydrothermal treatment of p-phenylenediamine (p-PD), and then applied for the highly selective and sensitive fluorescence detection of the alachlor herbicide in soil samples. The synthesized N-CQDs exhibited strong red emission with a 27.6% quantum yield (QY) and high stability. Under the optimized experimental conditions, the as-prepared red-emissive N-CQDs were employed as a fluorescent probe to successfully detect trace alachlor, and their fluorescence presented a good linear decline with the increase of the alachlor concentration from 0.005 to 150 mM with a limit of detection of 0.2 nM. The N-CQDs as a fluorescent probe were used for the detection of alachlor in soil samples with satisfactory recoveries ranging from 86.6–114.3%, indicating that they were a promising fluorescent probe for highly selective and sensitive determination of alachlor.

    关键词: soil samples,Red-emissive nitrogen doped carbon quantum dots,fluorescence detection,alachlor herbicide

    更新于2025-09-16 10:30:52