修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Graphene Oxide - Applications and Opportunities || Graphene Oxide/Reduced Graphene Oxide Aerogels

    摘要: In this chapter, we will discuss aerogels based on graphene oxide/reduced graphene oxide—promising composite materials, based on 2D carbon nanoparticles, with a certain architecture that prevents aggregation of graphene layers with a highly developed surface that have a high potential technological realization as materials for supercapacitors, sensors, batteries, and actuators. This chapter describes the existing methods for producing composite aerogels based on graphene oxide/reduced graphene oxide, the structural features of these materials, the most relevant studies in the areas of surface modification, architectural control, improvement of mechanical properties, and the most interesting applications. It has been shown that such materials have relatively high specific surface values and a high degree of exfoliation of graphene layers, but an urgent need is to improve them, which is due to the fragility of graphene aerogels and composite materials based on them, as well as the need to modify the surface to control porosity.

    关键词: cross linking,hydrothermal synthesis,highly porous materials,carbon based materials,reduced graphene oxide aerogels,graphene oxide aerogels,self-gelation

    更新于2025-09-23 15:21:21

  • Plasmonica??Assisted Graphene Oxide Films with Enhanced Photothermal Actuation for Soft Robots

    摘要: Carbon-based materials are widely used as light-driven soft actuators relying on their thermal desorption or expansion. However, applying a passive layer in such film construction greatly limits the actuating efficiency, e.g., bending amplitude and speed. In this work, a dual active layer strengthened bilayer composite film made of graphene oxide (GO)–polydopamine (PDA)–gold nanoparticles (Au NPs)/polydimethylsiloxane (PDMS) is developed. In this film, the conventional passive layer is replaced by another AuNPs-enhanced thermal responsive layer. When applying NIR light exposure, the whole film deforms controllably resulting from the water loss in the GO–PDA–Au NPs layer and thermal expansion in the PDMS layer. Benefiting from the dual active bilayer mechanism, the thin film’s actuating efficiency is dramatically improved compared with that of conventional methods. Specifically, the bending amplitude is enhanced up to 173%, and the actuating speed is improved to 3.5-fold. The soft actuator can act as an artificial arm with high actuating strength and can be used as a wireless gripper. Moreover, the film can be designed as soft robots with various locomotion modes including linear, rolling, and steering motions. The developed composite film offers new opportunities for biomimetic soft robotics as well as future applications.

    关键词: plasmonic-enhanced effects,soft manipulators,carbon-based materials,soft robotics,dual active bilayers

    更新于2025-09-23 15:19:57

  • [IEEE 2018 International Flexible Electronics Technology Conference (IFETC) - Ottawa, ON, Canada (2018.8.7-2018.8.9)] 2018 International Flexible Electronics Technology Conference (IFETC) - Fabrication and Performance Evaluation of Carbon-based Stretchable RFID Tags on Textile Substrates

    摘要: We fabricate carbon-based stretchable antennas for passive UHF RFID tags. The tag antennas are created on a stretchable elastic band by brush-painting. In addition to wireless evaluation of the fabricated RFID tags before and after cyclic stretching, the properties of the novel carbon-based antenna material are studied. The wireless performance of the established RFID tags is compared to similar stretchable silver-based RFID tags. Based on the achieved results, the established carbon-based tag antennas do not perform in the same high level as the silver-based tag antennas but their read ranges of around 2 to 2.4 meters are suitable for versatile textile-integrated RFID applications. Stretching causes permanent decrease to the tag read range but they remain functional even after 100 stretching cycles. These preliminary results are very promising, considering the current trend towards more environmentally friendly and cost-effective materials in electronics.

    关键词: passive UHF RFID,textile substrates,wearable electronics,carbon-based materials,antennas,stretchable electronics

    更新于2025-09-19 17:15:36