修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

22 条数据
?? 中文(中国)
  • Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite

    摘要: Precise control of crystal orientations and macroscopic morphology of a perovskite crystal is crucial for various optoelectronic applications relying on charge carrier transport tuning along exposed crystal facets. Here, taking methylammonium lead bromide (CH3NH3PbBr3) as an example, and employing a novel crystal facet engineering method, we successfully construct two kinds of perovskite crystals with exposed {001} and {110} facets. We find that the free carriers’ photoluminescence lifetime on the {001} facets can be 3 times longer than that on {110} facets. The related mechanisms are investigated via fluorescence lifetime imaging microscopy and in situ transmission electron microscopy. These indicate that the different trap state density of exposed facets and crystal structure changing of CH3NH3PbBr3 under light and electron beam irradiation lead to the differences in carrier transport along different facets. By distinguishing the charge carrier transport on different CH3NH3PbBr3 exposed facets, micro-photodetectors have been constructed. A device fabricated with the {001} exposed facets exhibited two orders of magnitude higher photocurrent and half as much dark current as a {110} facet-based device. Thus, the crystal facet engineering of perovskites can be widely adopted for understanding physical/chemical properties of perovskite crystals and provides great potential for novel perovskite optoelectronic device applications.

    关键词: crystal facet engineering,charge carrier transport,optoelectronic applications,photodetectors,perovskite

    更新于2025-09-09 09:28:46

  • [IEEE 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) - Austin, TX, USA (2018.9.24-2018.9.26)] 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) - Carrier Transport in a Two-Dimensional Topological Insulator Nanoribbon in the Presence of Vacancy Defects.

    摘要: We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green’s function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.

    关键词: nanoribbon,vacancy defects,non-equilibrium Green’s function,carrier transport,two-dimensional topological insulator

    更新于2025-09-04 15:30:14