- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
New approach to enhancing the performance of cloud-based vision system of mobile robots
摘要: Mobile robots require real-time performance, high computation power, and a shared computing environment. Although cloud computing offers computation power, it may adversely affect real-time performance owing to network lag. The main objective of this study is to allow a mobile robot vision system to reliably achieve real-time constraints using cloud computing. A human cloud mobile robot architecture is proposed as well as a data flow mechanism organized on both the mobile robot and the cloud server sides. Two algorithms are proposed: (i) A real-time image clustering algorithm, applied on the mobile robot side, and (ii) A modified growing neural gas algorithm, applied on the cloud server side. The experimental results demonstrate that there is a 25% to 45% enhancement in the total response time, depending on the communication bandwidth and image resolution. Moreover, better performance in terms of data size, path planning time, and accuracy is demonstrated over other state-of-the-art techniques.
关键词: Computation offloading,Computer vision,3D point cloud,Mobile robot,Stereo vision,Real-time networking,Cloud computing,Cloud robotics
更新于2025-09-23 15:23:52
-
Mapping Forest Structure Using UAS inside Flight Capabilities
摘要: We evaluated two unmanned aerial systems (UASs), namely the DJI Phantom 4 Pro and DJI Mavic Pro, for 3D forest structure mapping of the forest stand interior with the use of close-range photogrammetry techniques. Assisted flights were performed within two research plots established in mature pure Norway spruce (Picea abies (L.) H. Karst.) and European beech (Fagus sylvatica L.) forest stands. Geotagged images were used to produce georeferenced 3D point clouds representing tree stem surfaces. With a flight height of 8 m above the ground, the stems were precisely modeled up to a height of 10 m, which represents a considerably larger portion of the stem when compared with terrestrial close-range photogrammetry. Accuracy of the point clouds was evaluated by comparing field-measured tree diameters at breast height (DBH) with diameter estimates derived from the point cloud using four different fitting methods, including the bounding circle, convex hull, least squares circle, and least squares ellipse methods. The accuracy of DBH estimation varied with the UAS model and the diameter fitting method utilized. With the Phantom 4 Pro and the least squares ellipse method to estimate diameter, the mean error of diameter estimates was ?1.17 cm (?3.14%) and 0.27 cm (0.69%) for spruce and beech stands, respectively.
关键词: point cloud,diameter at breast height (DBH),photogrammetry,obstacle sensing,forestry,unmanned aerial system (UAS),vision positioning system
更新于2025-09-23 15:23:52
-
Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus
摘要: Two-dimensional (2D) horizontal fields of cloud optical thickness derived from airborne measurements of solar spectral radiance during the Vertical Distribution of Ice in Arctic Clouds (VERDI) campaign (carried out in Inuvik, Canada in April/May 2012) are compared with semi-idealized Large Eddy Simulations (LES) of Arctic stratus performed with the COnsortium for Small-Scale MOdeling (COSMO) atmospheric model. The input for the LES is obtained from collocated airborne dropsonde observations. Four consecutive days of a persistent Arctic stratus observed above the sea-ice free Beaufort Sea are selected for the comparison. Macrophysical cloud properties such as cloud top altitude and vertical extent are well captured by COSMO. Cloud horizontal inhomogeneity quantified by the standard deviation and one-dimensional (1D) inhomogeneity parameters show that COSMO produces only half of the measured horizontal cloud inhomogeneities, while the directional structure of the cloud inhomogeneity is well represented by the model. Differences between the individual cases are mainly associated with the wind shear near cloud top and the vertical structure of the atmospheric boundary layer. A sensitivity study changing the wind velocity in COSMO by a vertically constant scaling factor shows that the directional cloud inhomogeneity structures strongly depend on the mean wind speed. A threshold wind velocity is identified, which determines when the cloud inhomogeneity stops increasing with increasing wind velocity.
关键词: airborne measurements,COSMO model,horizontal inhomogeneity,wind speed sensitivity,Large Eddy Simulation,Arctic stratus,cloud optical thickness
更新于2025-09-23 15:23:52
-
Improved Cloud Screening Method for the Analysis of Sky Radiometer Measurements and Application to Asian Dust Detection
摘要: A cloud screening method employing two successive procedures of variability test and coarse mode test was developed, aiming at better elimination of cloud-contaminated data in the sky radiometer retrievals. The performance of the new cloud screening method was evaluated by examining statistical features with cloud coverage observations and lidar measurements. The variability test appeared to effectively eliminate data contaminated by relatively thick low-level clouds, whereas the coarse mode test appeared to eliminate data likely contaminated by thin cirrus-type clouds. Overall, the new method was considered to improve the current Sky Radiometer Network (SKYNET) data. The cloud screening method was then applied to dust detection from sky radiometer measurements. The detection performance was evaluated using surface synoptic observations (SYNOP) dust reports and the yellow sand index from NIES lidar measurements. It was shown that the new method helped to detect dust, effectively eliminating cloud-contaminated signals that were similar to those of the dust.
关键词: dust,cloud screening,aerosol,SKYNET
更新于2025-09-23 15:23:52
-
Optical measurements based on practical methods for detecting time-wise morphing structures
摘要: Nowadays non-contact measurement methods have become widely used systems in several fields especially robotics, aerospace, architecture, and cultural heritage. Practical devices, taken from mass markets, are increasingly being used in scientific and engineering research fields thanks to their ability to combine good accuracy with to the low-cost and ready-to-use experimental setup. In the present paper, digital image analysis (based on digital camera devices) and three-dimensional scanning technique (based on Kinect I and Kinect II sensors) are compared to evaluate their performance in detecting a time-wise shape modification. Digital camera and Kinect sensors are used to the non-contact detection of a morphing blade able to modify its geometry according to airflow temperature variation. The comparison showed the capability of the digital image technique to provide quantitative information when a proper alignment is adopted, while the three-dimensional scanning process allows the continuous blade detection useful to quantify the shape modification. Two-dimensional and three-dimensional blade shape reconstruction processes are also discussed.
关键词: Reverse Engineering,Non-contact measurement,Point cloud,Kinect sensor,Optical method,Digital image analysis
更新于2025-09-23 15:23:52
-
On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer
摘要: In this work, we present on-line fluorescent aerosol measurements by the wideband integrated bioaerosol spectrometer (WIBS-4A) near an industrial zone in Nanjing, a megacity in the Yangtze-River-Delta (YRD) region. The fieldwork was conducted from April 1 to May 8, 2014. A TSI. 3321 aerosol-particle-sizer (APS) was simultaneously deployed to measure the total number size distribution of aerosol with diameter from 0.8–20 μm. Both WIBS-4A and APS reported similar number concentration and temporal profiles (R2 = 0.72). However, the daily average number of potential bioaerosols was only 0.5 ± 0.2% of the total particles detected by the WIBS-4A and displayed a completely different diurnal profile from that of APS. In addition, WIBS-4A can only provide integrated fluorescent signals, which strongly limited the potential to specifically identify the bioaerosols. Accordingly, hierarchical-agglomerative-cluster-analysis (HACA) was utilized to identify and speciate the potential bioaerosols from the WIBS-4A dataset. By maximizing the total distances among all potential cluster centers, a 12-cluster solution was accepted as the optimum result. These clusters were further identified according to their fluorescent signatures, size, and morphology, i.e., non-bioaerosols, bacteria, and fungal spores and/or pollen fragments. Bacteria were the dominant bioaerosol species detected in this work. The diurnal profiles of bioaerosols correlated very well with relatively humidity (RH), reaching daily maxima around 3 AM~6 AM, indicating the presence of humidity controlled bioaerosol emission mechanism, i.e., bacteria may flourish under moderate ambient temperature, RH, and the absence of UV radiation. The size- and AF-distributions of bioaerosols indicated that bioaerosols normally varied substantially in size and assumed a rather irregular shape. Although the number concentration of bioaerosols was relatively small, most bioaerosols can efficiently serve as ice nuclei by providing rough and irregular surfaces, verified by the observation results. Therefore, WIBS-4A measurements can still be informative for investigations of bioaerosols in the atmosphere, especially when HACA method was incorporated into the data processing.
关键词: Hierarchical agglomerative cluster analysis,WIBS-4A,Ice nuclei,Cloud condensation nuclei,Primary biological aerosol
更新于2025-09-23 15:23:52
-
Determination of the optimal camera distance for cloud height measurements with two all-sky imagers
摘要: All-sky imager based systems can be used to measure a number of cloud properties. Configurations consisting of two all-sky imagers can be used to derive cloud heights for weather stations, aviation and nowcasting of solar irradiance. One key question for such systems is the optimal distance between the all-sky imagers. This problem has not been studied conclusively in the literature. To the best of our knowledge, no previous in-field study of the optimal camera distance was performed. Also, comprehensive modeling is lacking. Here, we address this question with an in-field study on 93 days using 7 camera distances between 494 m and 2562 m and one specific cloud height estimation approach. We model the findings and draw conclusions for various configurations with different algorithmic methods and camera hardware. The camera distance is found to have a major impact on the accuracy of cloud height determinations. For the used 3 megapixel cameras, cloud heights up to 12,000 m and the used algorithmic approaches, an optimal camera distance of approximately 1500 m is determined. Optimal camera distances can be reduced to less than 1000 m if higher camera resolutions (e.g. 6 megapixel) are deployed. A step-by-step guide to determine the optimal camera distance is provided.
关键词: Cloud height measurements,Solar nowcasting,All-sky imagers
更新于2025-09-23 15:23:52
-
Methods for LiDAR-based estimation of extensive grassland biomass
摘要: Biomass estimation derived from Terrestrial Laser Scanning (TLS) is already an established technique in forestry, whereas TLS measurements are less well investigated for use in grassland ecosystems. Detailed information provided by survey systems can enhance management strategies and support timely measures. Field measurements were made in the “UNESCO biosphere reserve Rh?n” in Central Germany with a TLS station (Leica P30). Four methods for estimating biomass from 3d point clouds have been applied to the data, which were Canopy Surface Height (CSH), Sum of Voxel, Mean of 3d-grid Heights, and Convex-Hull. The optimum set of model specific parameters to increase model stability and performance was identified. The methods were compared in terms of model performance and calculation speed. For each method the effect of the number of scans used for each point cloud was assessed. The best fit for fresh biomass determination was achieved with a mean CSH value derived from the top 5% of all CSH values (adj. R2 0.72). In all cases, models for dry biomass estimation had less explanatory power than those for fresh biomass. CSH models based on point clouds, which were merged from two opposite scans, achieved the highest average accuracy both for fresh and dry biomass (adj. R2 0.73 and 0.58 respectively).
关键词: Biomass,TLS,Point cloud,Grassland,LiDAR
更新于2025-09-23 15:23:52
-
Practical optimal registration of terrestrial LiDAR scan pairs
摘要: Point cloud registration is a fundamental problem in 3D scanning. In this paper, we address the frequent special case of registering terrestrial LiDAR scans (or, more generally, levelled point clouds). Many current solutions still rely on the Iterative Closest Point (ICP) method or other heuristic procedures, which require good initializations to succeed and/or provide no guarantees of success. On the other hand, exact or optimal registration algorithms can compute the best possible solution without requiring initializations; however, they are currently too slow to be practical in realistic applications. Existing optimal approaches ignore the fact that in routine use the relative rotations between scans are constrained to the azimuth, via the built-in level compensation in LiDAR scanners. We propose a novel, optimal and computationally efficient registration method for this 4DOF scenario. Our approach operates on candidate 3D keypoint correspondences, and contains two main steps: (1) a deterministic selection scheme that significantly reduces the candidate correspondence set in a way that is guaranteed to preserve the optimal solution; and (2) a fast branch-and-bound (BnB) algorithm with a novel polynomial-time subroutine for 1D rotation search, that quickly finds the optimal alignment for the reduced set. We demonstrate the practicality of our method on realistic point clouds from multiple LiDAR surveys.
关键词: Branch-and-bound,Exact optimization,Point cloud registration
更新于2025-09-23 15:23:52
-
[IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - 3D Data Acquisition Using Stereo Camera
摘要: Computer vision systems allow digital reconstruction of targets by capturing information through remote sensors such as video cameras and scanners. In this context, the objective of this work was to evaluate the capacity and quality of three-dimensional reconstruction of static targets using the ZED stereoscopic camera. For this goal, we took images of several environments and objects with different surfaces, textures, lighting, distances and acquisition speeds. The results were compared with high-density and high precision point clouds obtained from the targets using a Leica Viva TS15 total station. The data were processed in the CloudCompare software to calculate the displacement between the models generated by the camera and the total station. Under certain circumstances, this technology is able to reconstruct three-dimensional objects and environments with an error of a few centimeters.
关键词: Machine Vision,Mesh,Point Cloud,ZED Camera,SLAM
更新于2025-09-23 15:23:52