修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Tuning the Potential of Electron Extraction from Microbes with Ferrocene‐Containing Conjugated Oligoelectrolytes

    摘要: Synthetic systems that facilitate electron transport across cellular membranes are of interest in bio-electrochemical technologies such as bio-electrosynthesis, waste water remediation, and microbial fuel cells. The design of second generation redox-active conjugated oligoelectrolytes (COEs) bearing terminal cationic groups and a π-delocalized core capped by two ferrocene units is reported. The two COEs, DVFBO and F4-DVFBO, have similar membrane affinity, but fluorination of the core results in a higher oxidation potential (422 ± 5 mV compared to 365 ± 4 mV vs Ag/AgCl for the neutral precursors in chloroform). Concentration-dependent aggregation is suggested by zeta potential measurements and confirmed by cryogenic transmission electron microscopy. When the working electrode potential (ECA) is poised below the oxidation potential of the COEs (ECA = 200 mV) in three-electrode electrochemical cells containing Shewanella oneidensis MR-1, addition of DVFBO and F4-DVFBO produces negligible biocurrent enhancement over controls. At ECA = 365 mV, DVFBO increases steady-state biocurrent by 67 ± 12% relative to controls, while the increase with F4-DVFBO is 30 ± 5%. Cyclic voltammetry supports that DVFBO increases catalytic biocurrent and that F4-DVFBO has less impact, consistent with their oxidation potentials. Overall, electron transfer from microbial species is modulated via tailoring of the COE redox properties.

    关键词: conjugated oligoelectrolytes,bio-electrochemical systems,transmembrane electron transfer,exoelectrogenic microbes,redox-active molecules

    更新于2025-09-04 15:30:14