修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Network Structured CuWO4/BiVO4/Co-Pi Nanocomposite for Solar Water Splitting

    摘要: A network structured CuWO4/BiVO4 nanocomposite with a high specific surface area was prepared from CuWO4 nanoflake (NF) arrays via a method that combined drop-casting and thermal annealing. The obtained CuWO4/BiVO4 exhibited high catalytic activity toward photoelectrochemical (PEC) water oxidation. When cobalt phosphate (Co-Pi) was coupled with CuWO4/BiVO4, the activity of the resulting CuWO4/BiVO4/Co-Pi composite for the oxygen evolution reaction (OER) was further improved. The photocurrent density (Jph) for OER on CuWO4/BiVO4/Co-Pi is among the highest reported on a CuWO4-based photoanode in a neutral solution. The high activity for the PEC OER was attributed to the high specific surface area of the composite, the formation of a CuWO4/BiVO4 heterojunction that accelerated electron–hole separation, and the coupling of the Co-Pi co-catalyst with CuWO4/BiVO4, which improved the charge transfer rate across composite/solution interface.

    关键词: copper tungstate,cobalt phosphate,oxygen evolution reaction,bismuth vanadate,photoelectrochemical water splitting

    更新于2025-09-23 15:22:29

  • Copper Tungstate (CuWO4) Nanoflakes Coupled with Cobalt Phosphate (Co-Pi) for Effective Photoelectrochemical Water Splitting

    摘要: Photoelectrochemical (PEC) water splitting provides us a green way to convert and utilize solar energy. In this work, Co-Pi was electrochemically deposited onto CuWO4 nanoflakes (NFs) via a cyclic voltammetry (CV) method to enhance the photocatalytic performance of CuWO4 toward PEC water splitting. The results demonstrated that the photocurrent density as well as the charge-transfer efficiency was improved within the entire potential range. Besides, the CuWO4/Co-Pi exhibited an enhanced stability over the bare CuWO4 in the phosphate buffer solution (pH 7) and an extremely high Faradaic efficiency (ca. 96%). Our work reveals that combination of CuWO4 with Co-Pi is a feasible way to further enhance the performance of CuWO4 photoanode toward PEC OER.

    关键词: Photoelectrochemical water splitting,oxygen evolution reaction,copper tungstate,electrochemical cocatalyst,cobalt phosphate

    更新于2025-09-16 10:30:52

  • An affordable photocatalyst for pharmaceuticals and superior electro catalyst for methanol oxidation - A dual role by CuWO4 anchored bentonite clay

    摘要: In this present study, we developed a novel bentonite loaded CuWO4 nanoparticles (BEN-CuWO4 NPs) through the simple hydrothermal method. The as-prepared BEN-CuWO4 NPs was systematically characterized by various spectroscopic techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FESEM), High resolution transmission electron microscopy (HR-TEM), DRS-UV visible spectroscopy, Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) techniques. For the first time, the BEN-CuWO4 NPs were utilized as a bifunctional catalyst for the photodegradation of Diclofenac sodium (DFS) and electrooxidation of methanol. More distinctively, the BEN-CuWO4 NPs exhibited excellent photocatalytic activity could degrades above 94% DFS solution under visible light illumination with superior stability. Further, BEN-CuWO4 NPs portrayed superior electrocatalytic activity for the oxidation of methanol when compared to the pristine CuWO4. In addition, Impedance studies revealed that the BEN-CuWO4 NPs holds the tremendous dielectrical properties. This present investigation opens a new door way for the synthesis of multifunctional nanostructured materials for practical energy and environmental applications.

    关键词: Photo degradation,Electrochemical studies,Bentonite clay,Copper tungstate,Hydrothermal,Diclofenac sodium

    更新于2025-09-10 09:29:36