- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA) - Cartagena des Indias (2018.9.10-2018.9.14)] 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA) - Antenna Pattern Effects in a Low Sidelobe Circularly Polarized Planar Array Due to Element Errors
摘要: Random amplitude and phase errors at the elements of a phased array antenna cause elevated sidelobe levels. Formulas for predicting the sidelobe levels based on the error statistics are well known. These same random errors also cause an error in the axial ratio of a circular polarized array. This paper presents some new expressions for the change in axial ratio as a function of the random errors.
关键词: antenna arrays,axial ratio,planar arrays,circular polarization,array errors,crossed dipoles
更新于2025-09-23 15:22:29
-
[IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - The Influence of Terahertzand Middle-Infrared Laser Radiationon the Membrane-Dependent Properties of Ratsa?? Red Blood Cells
摘要: A novel planar ultrathin electronically steerable parasitic array radiator (ESPAR) is presented in this paper. Through theoretical analysis of the electric fields of orthogonally crossed dipoles in phase quadrature, it is found that the crossed dipoles radiate linearly polarized wave with a rotational electric field in the azimuth plane. This characteristic is then utilized to design a planar crossed dipole ESPAR, termed as “CD-ESPAR.” Furthermore, a simple but effective impedance matching method is also proposed and analyzed. To verify these concepts, a prototype with compact size and very low profile (0.42 λ0 × 0.42 λ0 × 0.006 λ0) resonating at 2.3 GHz is designed, fabricated, and measured. The measured results indicate that the proposed antenna achieves more than 17.8% impedance bandwidth and can produce four directional beams, covering the whole azimuth plane. Owing to its planar ultrathin structure, compact size, electronically beam-switching ability, low power, and low cost characteristics, it is promising for applications in wireless communications.
关键词: Beam-switching,planar antenna,smart antenna,crossed dipoles,electronically steerable parasitic array radiator (ESAPR)
更新于2025-09-23 15:21:01
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Coherence Properties of Multi-Section Semiconductor Frequency Swept Lasers
摘要: A novel planar ultrathin electronically steerable parasitic array radiator (ESPAR) is presented in this paper. Through theoretical analysis of the electric fields of orthogonally crossed dipoles in phase quadrature, it is found that the crossed dipoles radiate linearly polarized wave with a rotational electric field in the azimuth plane. This characteristic is then utilized to design a planar crossed dipole ESPAR, termed as “CD-ESPAR.” Furthermore, a simple but effective impedance matching method is also proposed and analyzed. To verify these concepts, a prototype with compact size and very low profile (0.42 λ0 × 0.42 λ0 × 0.006 λ0) resonating at 2.3 GHz is designed, fabricated, and measured. The measured results indicate that the proposed antenna achieves more than 17.8% impedance bandwidth and can produce four directional beams, covering the whole azimuth plane. Owing to its planar ultrathin structure, compact size, electronically beam-switching ability, low power, and low cost characteristics, it is promising for applications in wireless communications.
关键词: crossed dipoles,planar antenna,smart antenna,Beam-switching,electronically steerable parasitic array radiator (ESAPR)
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Monolithic CZTS/Si tandem cells: development of multilayer structures for the intermediate contact
摘要: A novel planar ultrathin electronically steerable parasitic array radiator (ESPAR) is presented in this paper. Through theoretical analysis of the electric ?elds of orthogonally crossed dipoles in phase quadrature, it is found that the crossed dipoles radiate linearly polarized wave with a rotational electric ?eld in the azimuth plane. This characteristic is then utilized to design a planar crossed dipole ESPAR, termed as “CD-ESPAR.” Furthermore, a simple but effective impedance matching method is also proposed and analyzed. To verify these concepts, a prototype with compact size and very low pro?le (0.42 λ0 × 0.42 λ0 × 0.006 λ0) resonating at 2.3 GHz is designed, fabricated, and measured. The measured results indicate that the proposed antenna achieves more than 17.8% impedance bandwidth and can produce four directional beams, covering the whole azimuth plane. Owing to its planar ultrathin structure, compact size, electronically beam-switching ability, low power, and low cost characteristics, it is promising for applications in wireless communications.
关键词: crossed dipoles,planar antenna,smart antenna,Beam-switching,electronically steerable parasitic array radiator (ESAPR)
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID) - Miramar Beach, FL, USA (2019.8.19-2019.8.21)] 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID) - Nonlinear Metasurfaces for Optical Applications
摘要: A novel planar ultrathin electronically steerable parasitic array radiator (ESPAR) is presented in this paper. Through theoretical analysis of the electric fields of orthogonally crossed dipoles in phase quadrature, it is found that the crossed dipoles radiate linearly polarized wave with a rotational electric field in the azimuth plane. This characteristic is then utilized to design a planar crossed dipole ESPAR, termed as “CD-ESPAR.” Furthermore, a simple but effective impedance matching method is also proposed and analyzed. To verify these concepts, a prototype with compact size and very low profile (0.42 λ0 × 0.42 λ0 × 0.006 λ0) resonating at 2.3 GHz is designed, fabricated, and measured. The measured results indicate that the proposed antenna achieves more than 17.8% impedance bandwidth and can produce four directional beams, covering the whole azimuth plane. Owing to its planar ultrathin structure, compact size, electronically beam-switching ability, low power, and low cost characteristics, it is promising for applications in wireless communications.
关键词: Beam-switching,planar antenna,smart antenna,crossed dipoles,electronically steerable parasitic array radiator (ESAPR)
更新于2025-09-19 17:13:59