- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Voltage Stimulated Anion Binding of Metallo-Porphyrin Induced Crystalline 2D Nanoflakes
摘要: Voltage stimulated redox active materials received significant attention in the field of organic electronics and sensor technology. Consequently, such stimuli responsive materials triggered the formation of crystalline nanostructures facilitates the design of efficient smart devices hitherto unknown. Thus, we reported free base and metallo- tetratolylporphyrin linked ferrocene derivatives (H2TTP-Fc and ZnTTP-Fc) undergo distinct proton/anion binding mechanism in CHCl3 during bulk electrolysis at applied voltage of 1.4 V followed by nanospheres and crystalline 2D nanoflakes formation via MVD approach. Cyclic voltammetry and UV-Vis absorption studies of H2TTP-Fc and ZnTTP-Fc revealed the cation (H+)/anion (Cl-) binding affinity towards free ‘N’ atoms and Zn leads [H4TTP-Fc]+Cl- and H+[(Cl)ZnTTP-Fc]- thereby improvement in current and charge generation compared to initial state. SEM and TEM images revealed the nanospheres and 2D nanoflakes with average diameter of 50 – 200 nm and 0.2 - 1 μm. x-ray diffraction analysis suggest that protonated H2TTP-Fc aggregates exhibit amorphous nature, while H+[(Cl)ZnTTP-Fc]- revealed crystalline nature from layer-by-layer arrangement of nanoflakes assisted by π-π stacking and ion-dipole interactions. Hence, voltage responsive anion binding of metallo-porphyrins unique observation offer remarkable design of smart organic materials for sensors and biological applications.
关键词: anion binding,crystalline nanoflakes,metallo-porphyrin,self-assembly,bulk electrolysis
更新于2025-09-23 15:23:52