- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Distributed Processing for Multi-Relay Assisted OFDM with Index Modulation
摘要: Orthogonal frequency-division multiplexing with index modulation (OFDM-IM) has become a high-profile modulation scheme for the fifth generation (5G) wireless communications, and thus been extended to multi-hop scenarios in order to improve the network coverage and energy efficiency. However, the extension of OFDM-IM to multi-relay cooperative networks is not trivial, since it is required that a complete OFDM block should be received and decoded as an entity in one node. This requirement prevents the employment of multiple relays to forward fragmented OFDM blocks on individual subcarriers. In this regard, we propose a distributed processing scheme for multi-relay assisted OFDM-IM, by which multiple relays are selected to forward signals in a per-subcarrier manner to provide optimal error performance for two-hop decode-and-forward (DF) OFDM-IM systems. Specifically, a single selected relay only needs to decode partial information carried on certain active subcarriers and forward just as for traditional OFDM systems without IM. After receiving all signals on active subcarriers forwarded by different relays, the destination can reconstruct the complete OFDM block and retrieve the full information. We analyze the average block error rate (BLER) and modulation capacity of the two-hop OFDM-IM system employing the proposed distributed DF protocol and verify the analysis by numerical simulations.
关键词: multi-carrier relay selection,decode-and-forward (DF) relaying,Orthogonal frequency-division multiplexing with index modulation (OFDM-IM),distributed system,distributed processing
更新于2025-09-23 15:22:29
-
Precise Performance Analysis of Dual-Hop Mixed RF/Unified-FSO DF Relaying with Heterodyne Detection and Two IM-DD Channel Models
摘要: This paper provides precise performance analysis of the dual-hop mixed radio frequency (RF)/unified free space optical (FSO) decode-and-forward (DF) relaying system, in which the heterodyne detection (HD) and the intensity modulation-direct detection (IM-DD) are taken into account for FSO detection. To this end, we derive closed-form expressions for the outage probability, average bit error rate (BER), and the ergodic channel capacity of this system. In this analysis, we utilize, for the first time as per our knowledge, a precise channel capacity result for the IM-DD channel. Moreover, this is the first time that not only the (IM-DD input-independent) but also the (IM-DD cost-dependent) AWGN channel is considered in such system analyses. Additionally in this study, we assume that the first hop (RF link) follows Nakagami-m fading, and the second hop (FSO link) follows Málaga (M) turbulence with pointing errors. These fading and turbulence models contain other models (such as Rayleigh and Gamma-Gamma) as special cases, thus our analyses can be seen as a generalized one from the RF and FSO fading models point of view. Also, in BER derivation, we assume that the modulation schemes in the two hops can be different, since not all modulation schemes are suitable for IM-DD FSO links. In addition, the system performance is investigated asymptotically at high signal to noise ratios (SNRs). This investigation leads to new non-reported coding gain and diversity order analyses of such system. Interestingly, we find that in the FSO hop, at high transmitted powers, all the considered FSO detectors result in the same diversity order. Furthermore, we provide simulation results that verify the accuracy of the obtained analytical and asymptotic expressions.
关键词: Nakagami-m fading,Málaga (M) fading,HD,DF,heterodyne detection,Mixed RF/FSO relay network,IM-DD,decode-and-forward,intensity modulation-direct detection
更新于2025-09-23 15:22:29
-
[IEEE 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) - Swat, Pakistan (2019.7.24-2019.7.25)] 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) - Modeling and Analysis of Novel Tandem Solar Cells
摘要: While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner’s data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namely error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs.
关键词: symbol error rates,energy efficiency,MIMO,space-time codes,Rician,decode-and-forward,outage probability,wireless body area networks,Cooperative communication,Rayleigh
更新于2025-09-23 15:19:57
-
[IEEE 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) - Denpasar, Bali, Indonesia (2019.10.1-2019.10.4)] 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) - Synchronous Generator Stability Investigation in Power System with High-Penetration Photovoltaics Under Varying Solar Irradiances
摘要: While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner’s data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namely error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs.
关键词: Rayleigh,symbol error rates,MIMO,outage probability,Rician,decode-and-forward,energy efficiency,Cooperative communication,wireless body area networks,space-time codes
更新于2025-09-19 17:13:59