- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Construction of a Biosensor Based on a Combination of Cytochrome c, Graphene, and Gold Nanoparticles
摘要: A biosensor based on a combination of cytochrome c (Cyt c), electrochemical reduced graphene oxides (ERGO), and gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) was fabricated. The proposed biosensor electrode was denoted as GCE/ERGO-Na?on/AuNPs/Cyt c/Na?on, where ERGO-Na?on was deposited by dropping graphene oxides-Na?on mixed droplet ?rst and following electrochemical reduction, AuNPs were directly deposited on the surface of the ERGO-Na?on modi?ed electrode by electrochemical reduction, and other components were deposited by the dropping-dry method. The effect of the deposition amount of AuNPs on direct electrochemistry of Cyt c in the proposed electrode was investigated. The hydrogen peroxide was taken to evaluate the performance of the proposed biosensor. The results showed that the biosensor has great analytical performance, including a high sensitivity, a wide linear range, a low detection limit, and good stability, reproducibility, and reliability.
关键词: gold nanoparticles,cytochrome c,graphene,direct electrochemistry,biosensor,hydrogen peroxide
更新于2025-09-23 15:23:52
-
Hemoglobin Immobilization on Multiporous Nanofibers of SnO <sub/>2</sub> and Chitosan Composite for Hydrogen Peroxide Sensing
摘要: A multiporous nanofiber (MPNFs) of SnO2 and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO2 that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO2 exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO2 are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO2, a direct electron transfer between the protein’s redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at ?0.29 V and ?0.18 V and found to be sensitive to H2O2. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10?6–1.5 × 10?4 M. Overall experimental results show that MPNFs of SnO2 has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO2 is a very promising candidate for future biosensor applications.
关键词: Multiporous SnO2 Nanofiber,Hemoglobin,Electrical Contact,H2O2 Sensing,Direct Electrochemistry
更新于2025-09-09 09:28:46