修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Improved conductivity of carbonized polyimide by CO <sub/>2</sub> laser graphitization

    摘要: Direct laser writing (DLW) is a fast and cost-effective technique for printing conductive structures on flexible substrates such as polyimide (PI) by the conversion of insulative PI to conductive carbon. However, the conductivity (B103 S m?1) obtained by this method needs to be improved to compete with ink-jet printing of carbon-based materials. The reason behind the low conductivity achieved by the DLW process is due to the crystallinity and hybridization of bonding in carbonaceous structures. In this work, the DLW process has been implemented in two steps: the first step called carbonization was performed by writing pulsed CO2 laser on PI to form tracks which consist of amorphous tetrahedral carbon (a mixture of sp2 and sp3 hybridized carbon) having intrinsically low conductivity. The second step called graphitization is overwriting of the laser on the pre-carbonized tracks to convert sp3 hybridized bonds to sp2 hybridized bonds by the process called laser graphitization. The conductivity of tracks carbonized at (0.21 ± 0.02) W and fluence (3.31 ± 0.32) × 103 mJ cm?2 at a repetition rate of 0.1 kHz was 56.1 ± 3.1 S m?1 which increased to 146.7 ± 5.1 S m?1 upon overwriting with the laser at (0.50 ± 0.03) W and fluence (7.88 ± 0.47) × 103 mJ cm?2 at the same repetition rate. The photothermal process of carbonization and graphitization is modeled for the DLW process and the threshold power of both the processes is calculated and validated by Raman spectroscopy. Improved conductivity achieved by detailed understanding of the laser and material parameters involved in this transformation enables process optimization leading to future applications in scalable manufacturing of flexible bio-sensors and electrochemical energy storage devices.

    关键词: Direct laser writing,carbonization,graphitization,CO2 laser,polyimide,conductivity

    更新于2025-09-19 17:13:59

  • Microcontact Printing with Laser Direct Writing Carbonization for Facile Fabrication of Carbon‐Based Ultrathin Disk Arrays and Ordered Holey Films

    摘要: A nanometer-thick carbon film with a highly ordered pattern structure is very useful in a variety of applications. However, its large-scale, high-throughput, and low-cost fabrication is still a great challenge. Herein, microcontact printing (μCP) and direct laser writing carbonization (DLWc) are combined to develop a novel method that enables ease of fabrication of nanometer-thick and regularly patterned carbon disk arrays (CDAs) and holey carbon films (HCFs) from a pyromellitic dianhydride-oxydianiline-based polyamic acid (PAA) solution. The effect of PAA concentration and pillar lattice structure of the polydimethyl siloxane stamp are systematically studied for their influence on the geometrical parameter, surface morphology, and chemical structure of the finally achieved CDAs and HCFs. Within the PAA concentration being investigated, the averaged thickness of CDAs and HCFs can be tailored in a range from a few tens to a few hundred of nanometers. The μCP+DLWc-enabled electrically conductive CDAs and HCFs possess the characteristics of ease-of-fabrication, nanometer-thickness, highly regular and controlled patterns and structures, and the ability to form on both hard and soft substrates, which imparts usefulness in electronics, photonics, energy storage, catalysis, tissue engineering, as well as physical, chemical, and bio-sensing applications.

    关键词: direct laser writing carbonization,holey carbon films,microcontact printing,carbon disk arrays

    更新于2025-09-11 14:15:04