- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules
摘要: The spectral changes in surface-enhanced resonant Raman scattering (SERRS) and surface enhanced fluorescence (SEF) of single silver nanoparticle dimers adsorbed by near-single dye molecules are reproduced under strong coupling regimes. For the reproduction, the enhancement and quenching factors in SERRS and SEF are derived from the Purcell factors including both radiative and nonradiative plasmon modes. The Purcell factors are estimated using the coupling energies obtained by analyzing the spectral changes in plasmon resonance during SERRS and SEF decay processes on the basis of a classical hybridization model. The model is composed of a plasmon and a molecular exciton with phonon replicas accurately representing the molecular multi-level system. The reproduced SERRS spectral changes are consistent with the experimental ones. Furthermore, the calculated SEF spectral changes can reproduce the experimental ones by phenomenologically assuming transitions from ultra-fast SEF to conventional SEF with decreasing coupling energies.
关键词: strong coupling,hybridization model,silver nanoparticle dimer,dye molecules,Purcell factors,surface enhanced fluorescence,surface-enhanced resonant Raman scattering
更新于2025-09-23 15:23:52
-
A DFT study to probe homo-conjugated norbornylogous bridged spacers in dye-sensitized solar cells: an approach to suppressing agglomeration of dye molecules
摘要: This work reports a sigma-bridged framework as spacers to design new dye-sensitized solar cells. The norbornylogous bridged spacer can avoid p–p aggregation of dye molecules on the semiconductor surface in DSSCs. These sesquinorbornatrienes are known to exhibit electron propagation through the interaction of sigma and p orbitals via through bond (OITB) and through space (OITS) mechanisms. Density functional theory (DFT) calculations performed with these spacers and a modelled simple donor unit like N,N-dimethylamine and cyanoacrylic acid as the anchoring group showed significant results with the requisite optical parameters for DSSCs. The newly designed dyes have shown comparable or better optical properties compared to the reference dye molecule with p-conjugated thiophene spacer units. The DGinjection, VOC and mnormal values calculated for the designed dyes were found to be higher than those of the reference system. The trans-sesquinorbornatriene system spacer (6-D) showed a VOC of 3.3 eV, DGinjection of 2.4 eV and oscillatory strength (f) of 0.96. The total and partial density of states indicates a good communication between the valence and conduction band for the designed dyes. Transition density matrix results suggest that the exciton dissociation in the excited state is sufficiently high to overcome the coulombic attraction of the hole. These results are promising for the design of dye molecules with such scaffolds, to achieve better efficiency and to eliminate one of the major issues with p-spacer units in DSSCs.
关键词: homo-conjugated norbornylogous bridged spacers,dye molecules,DFT study,dye-sensitized solar cells,suppressing agglomeration
更新于2025-09-23 15:19:57
-
F?rster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers
摘要: F?rster resonance energy transfer (FRET) using colloidal semiconductor quantum dots (QDs) and dyes is of importance in a wide range of biological and biophysical studies. Here, we report a study on FRET between CuInS2/ZnS QDs and dark quencher dye molecules (IRDye QC-1). Oleate-capped QDs with photoluminescence quantum yields (PLQYs) of 55±4% are transferred into water by using two types of multifunctional polymer ligands combining imidazole groups and specific moieties with amine or methoxy groups as the terminal sites. The resulting water-dispersible QDs show PLQYs as high as 44±4% and exhibit long-term colloidal stability (at least 10 months at 4 °C in the dark) with a hydrodynamic diameter of less than 20 nm. A side-by-side comparison experiment was performed using the amine or methoxy-functionalized QDs for coupling to dark quencher dye molecules. The amine-functionalized QDs bind to the dye molecules via covalent bonds while methoxy-functionalized ones bind only weakly and non-specifically. The progressive quenching of the QD emission and shortening of its photoluminescence decay time upon increasing the number of conjugated dye molecules demonstrate that the QD acts as the energy donor and the dark quencher dye as the energy acceptor in a donor-acceptor FRET pair. The FRET dynamics of the QD-dye conjugates are simulated using two different models based on the possible origin of the multiexponential PL decay of the QDs (i.e., variations in nonradiative or radiative decay rates). The model based on the radiative decay rates provides a better fit of our experimental data and estimates a donor–acceptor distance (6.5 nm) that matches well the hydrodynamic radius of the amine-functionalized QDs.
关键词: dark quencher dye molecules,energy acceptor,multifunctional polymer ligands,CuInS2/ZnS,F?rster resonance energy transfer,colloidal semiconductor quantum dots,energy donor,photoluminescence quantum yields
更新于2025-09-12 10:27:22