- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Building Intermixed Donor-Acceptor Architectures for Water-Processable Organic Photovoltaics
摘要: A modified synthesis method for aqueous nanoparticle printing inks, based upon vacuum-assisted solvent removal, is reported. Poly(3-hexylthiophene) : phenyl C61 butyric acid methyl ester nanoparticle inks were prepared via this modified miniemulsion method; leading to both an improvement in photoactive layer morphology and a substantial reduction in the ink fabrication time. A combination of UV-visible spectroscopy, photoluminescence spectroscopy and scanning transmission X-ray microscopy measurements revealed a nanoparticle morphology comprised of highly intermixed donor-acceptor domains. Consistent with these measurements, dynamic mechanical thermal analysis of the nanoparticles showed a glass transition temperature (Tg) of 104 °C, rather than a pure polymer phase or pure fullerene phase Tg. Together the spectroscopy, microscopy and thermomechanical data indicate that rapid solvent removal generates a more blended nanoparticle morphology. As such, this study highlights a new experimental lever for optimising nanostructure in the photoactive layer of nanoparticulate organic photovoltaic devices by enabling highly intermixed donor-acceptor architectures to be built from customised nanoparticulate inks.
关键词: organic photovoltaic,scanning transmission X-ray microscopy,morphology,colloidal inks,exciton dissociation,Nanostructure,eco-friendly processing
更新于2025-11-19 16:46:39