修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power

    摘要: Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a Bquestions and answers^ layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.

    关键词: Multiregional input-output (MRIO),Life cycle assessment (LCA),Concentrated solar power,Sustainability,Electricity generation,Social life cycle assessment (S-LCA),Life cycle sustainability assessment (LCSA)

    更新于2025-09-23 15:22:29

  • Effects of nitrogen-dopant bonding states on liquid-flow-induced electricity generation of graphene: A comparative study

    摘要: We fabricate, measure and compare the effects of the bonding states of dopant nitrogen atoms in graphene devices, specifically on the liquid-flow-induced electricity by these devices. We find that nitrogen doping enhances the voltage induced by liquid flow regardless of the nitrogen bonding state. However, different nitrogen bonding states affect graphene’s conductivity differently: while graphitic nitrogen is suitable for electricity-generation applications, pyridinic nitrogen is hopeless for this purpose, due to the formation of symmetry-breaking defects of the latter.

    关键词: Water-graphene interface,Nitrogen doped graphene,Flow-induced electricity generation

    更新于2025-09-23 15:22:29

  • Thermophotovoltaic applications in waste heat recovery systems: example of GaSb cell

    摘要: In this study, it is aimed at evaluating real data in high temperature GaSb cell thermophotovoltaic (TPV) systems. The TPV systems are considered as an alternative energy source in terms of efficient use of waste heat, cost and efficiency. The TPV system can be defined as a system that converts waste heat energy emitted from heat sources into electrical energy at high temperature. In this context, efficiency and parameters of TPV GaSb cells have been determined in laboratory conditions. The conversion of the high temperature applied to the cell to electrical energy has been investigated by selecting the GaSb photovoltaic cell as the cell type. According to the analysis have been done so far, TPV high-temperature real graphics have been obtained using GaSb cell. The temperature parameters used are, namely, cell temperature and source temperature. With these graphs, energy efficiency, fill factor, effect of open-circuit voltage and short-circuit current values have been determined. While the efficiency value of the GaSb TPV cell systems was calculated, the radiation source temperature values have been taken in increments of 300 K between 1300 and 3100 K. In this analysis, the optimum energy conversion efficiency values of GaSb solar cell structure have been detected to be 21.57%. Opinions about the feasibility, efficiency and development of thermophotovoltaic energy conversion systems are stated, and suggestions are presented.

    关键词: electricity generation,GaSb cell,waste heat,thermophotovoltaic,real data,photovoltaic cell

    更新于2025-09-23 15:21:01

  • Possibilities of Using Semi-Transparent Photovoltaic Modules on Rooftops of Greenhouses for Covering Their Energy Needs

    摘要: Semi-transparent photovoltaic cells allow the transmittance of solar irradiance through them and they have been used in building’s skylights and facades. Their use on rooftops of greenhouses can result in electricity generation which can cover part or all of their energy needs without affecting the growth of the plants. This also results in the decrease of cooling requirements during the summer since less solar irradiance is entering the greenhouse and lower CO2 emissions due to energy use in it. However, their current prices are high compared with the prices of opaque PV cells. The purpose of the present work is to investigate the possible use of semi-transparent PV modules placed on the roof of energy intensive greenhouses in Crete-Greece in order to cover their energy requirements and sell the surplus electricity into the grid. Two different cases have been studied where greenhouses of 1,000 m2 each cover their high heating needs using heat pumps and solid biomass. PV modules of 42.5 KWp can be placed on their roofs covering slightly less than 50 % of their surface allowing enough solar irradiance to enter the greenhouse. In the first case the generated electricity can cover more than 80 % of total energy needs and in the second all the energy needs offering the possibility of selling the surplus electricity to the grid. However, the current high prices of semi-transparent PVs do not favour their use by farmers since their installation costs are high. Future financial support from the government could increase their attractiveness for commercial applications in greenhouses.

    关键词: greenhouses,electricity generation,cost,environmental impacts,Semi-transparent photovoltaics,energy

    更新于2025-09-23 15:19:57

  • Photovoltaic performance of one axis multiple-position sun-tracked PV panels

    摘要: In this article, the photovoltaic performance of one-axis multiple-positions sun-tracked photovoltaic panels (MP-PV) is investigated based on solar geometry and dependence of photovoltaic conversion efficiency on the incident angle (IA) of solar rays on PV panels. For such PV system, the azimuth angle (AZA) of PV panels is daily adjusted several times (M) from eastward in the morning to westward in the afternoon by rotating PV panels about inclined north-south axis (INSA) to ensure the projected incident angle (PIA) of solar rays on the plane perpendicular to INSA is always less than the specified angle θa. Results show that, the annual electricity generation (AEG) of MP-PV increases with the increase of M, but such increase is not noticeable when M>5. For MP-PV with the tilt-angle (β) of INSA being yearly fixed (1T-MP-PV), the optimal θa of 3P-,5P- and 7P-PV for maximizing AEG are respectively 24o, 15o and 11.5o, and their AEGs are respectively about 92%, 94% and 95% of that from similar 2-axis tracked PV panels (2A-PV). Whereas for MP-PV with the β being yearly adjusted four times at three tilts (3T-MP-PV), the optimal θa of 3P-, 5P- and 7P-PV are respectively about 22.5o, 14.5o and 11o, and the Pa are respectively about 96%, 98% and 99% of that of similar 2A-PV systems.

    关键词: photovoltaic conversion efficiency,azimuth angle,annual electricity generation,solar geometry,sun-tracked PV panels,incident angle,photovoltaic performance

    更新于2025-09-16 10:30:52

  • Photovoltaic Roof Tiles: The Influence of Heat Recovery on Overall Performance

    摘要: A photovoltaic (PV) roof tile serves both as a roofing material and as an electricity-producing surface. The main aim of the present study was to increase the overall system efficiency of PV tiles by using heat recovery. The chosen strategy was two-fold: determine the operational efficiency of PV tiles and optimize construction to increase the cooling effect when using air as the working medium. A detailed experimental study was undertaken to determine these effects. The results indicated that a combined electrical and thermal efficiency of 24% could be reached. This is promising and proves the potential for air to be the working medium in such systems. Moreover, this shows a direction for future system optimization.

    关键词: experimental study,photovoltaic (PV) roof tiles,heat recovery,efficiency performance of electricity generation,solar light simulator

    更新于2025-09-11 14:15:04

  • Visible-light photocatalytic fuel cell with Z-scheme g-C3N4/Fe0/TiO2 anode and WO3 cathode efficiently degrades berberine chloride and stably generates electricity

    摘要: A visible-light Z-scheme g-C3N4/Fe0/TiO2 anodic catalyst was tested with cathodic WO3 in photocatalytic Fuel Cell (PFC) that efficiently degrades berberine chloride and simultaneously generate electricity at pH 2,5,7 and 13. The Stainless-steel mesh electrodes loaded with prepared catalyst were irradiated by visible-light in single chamber PFC. The highest removal of berberine Chloride, cell voltage, and power density were 91%, 0.8 V, and 16.4 W/m2 at a current density of 2.02 mA/cm2, respectively after 90 min irradiation in 0.05 M Na2SO4 electrolyte, with 10 ? external resistance. The impacts of pH and initial concentration of BEC on photocatalytic degradation and cell voltage were evaluated. The cell current density is enhanced while the photocatalyst activity increased. The constructed PFC maintained high-performance after 5 uses. Its use in degrading wide spectrum refractory pollutants and generate electricity is expected for the proved catalyst design, paired electrodes and high PFC performance for practical wastewater treatment.

    关键词: Electricity generation,WO3,Visible-light,g-C3N4/Fe0/TiO2,Photocatalytic Fuel Cell,Berberine Chloride,Z-scheme

    更新于2025-09-10 09:29:36

  • [IEEE 2018 2nd International Conference on Engineering Innovation (ICEI) - Bangkok, Thailand (2018.7.5-2018.7.6)] 2018 2nd International Conference on Engineering Innovation (ICEI) - Forecasting Self-Consumption Solar Power Capacity of Industry and Business Sector in Thailand: a System Dynamic Model

    摘要: The future of solar Photovoltaic (PV) technology is bright. Not only solar PV is a clean energy but also has its price dropped and has its efficiency improved significantly since 1975. Thus, investing in solar PV is feasible and attractive nowadays. In Thailand, industrial and business sector are the largest power consumers which have an opportunity to reduce electricity cost and promote Corporate Social Responsibility (CSR) by using solar PV. So, installing solar PV as Isolated Power Supply system (IPS) of companies in the industrial sector reduces electricity consumption from the grid. This would cause a problem in demand forecasting for electricity in the grid. Through a questionnaire survey, this research aims to develop a system dynamic model to understand the dynamic behavior of factors that affect the solar PV capacity, and forecast the monthly solar PV capacity growth from 2018 to 2022 of the industry and business sector in Thailand.

    关键词: Electricity generation capacity,System dynamics,Solar PV,Forecasting

    更新于2025-09-09 09:28:46

  • A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of Reactive Red 120 and electricity generation

    摘要: Photocatalytic fuel cell (PFC) is considered as a sustainable green technology which could degrade organic pollutant and generate electricity simultaneously. A synergistic double-sided ZnO/BaTiO3 loaded carbon plate heterojunction photoanode was fabricated in different ratios by using simple ultrasonication and mixed-annealed method. The double-sided design of photoanode allowed the lights irradiated at both sides of the photoanode. The ferroelectricity fabricated photoanode was applied in a membraneless PFC with platinum-loaded carbon as the cathode. Results revealed that the photoanode with 1:1 ratio of BaTiO3 and ZnO exhibited a superior photocatalytic activity among all the photoanodes prepared in this study. The heterojunction of this photoanode was able to achieve up to a removal efficiency of 93.67 % with a maximum power density of 0.5284 μW cm-2 in 10 mg L-1 of Reactive Red 120 (RR120) without any supporting electrolyte. This photoanode was able to maintain at high performance after recycling 3 times. Over loading of ZnO above 50% on BaTiO3 could lead to deterioration of the performance of PFC due to the charge defects and light trapping ability. The interactions, interesting polarizations of the photocatalysts and proposed mechanism of the n-n type heterojunction in the photoanode of ZnO/BaTiO3 was also discussed.

    关键词: Photocatalytic fuel cell,Degradation,Reusability,ZnO/BaTiO3 heterojunction,Electricity Generation

    更新于2025-09-09 09:28:46